1887

Abstract

The hexose-ATP-kinase of wild-type (CBS 819) is, like hexokinase PII of , associated with carbon catabolite repression and phosphorylates -glucose and -fructose. The kinase of repression-resistant (Dog) mutants phosphorylates -glucose, but not -fructose. Subjecting the wild-type enzyme to 45 °C for a few minutes appears to alter its activity, specificity and kinetic characteristics to that of the mutant enzyme. Fast protein liquid chromatography, with anion-exchange or gel-filtration columns, gel-electrophoresis, and DNA hybridization with the mutant of the (hexokinase PII) gene of , all failed to resolve more than one hexose-ATP-kinase in Hence appears to have a single hexose-ATP-kinase, ∼ 72000, with two catalytic sites, analogous to the aspartate kinase/homoserine dehydrogenase of One site is hexokinase-like and associated with catabolite repression and the other is glucokinase-like. Values for apparent were 7·2 m--fructose and 0·55 m--glucose (hexokinase site) and 0·078 m--glucose (glucokinase site).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-2-381
1987-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/2/mic-133-2-381.html?itemId=/content/journal/micro/10.1099/00221287-133-2-381&mimeType=html&fmt=ahah

References

  1. Angyal S. J. 1984; The composition of reducing sugars in solution. Advances in Carbohydrate Chemistry and Biochemistry 42:15–68
    [Google Scholar]
  2. Bangham J. A. 1985 Statstream Cambridge: Elsevier Biosoft;
    [Google Scholar]
  3. Barnard E. A. 1975; Hexokinases from yeast. Methods in Enzymology 42:6–20
    [Google Scholar]
  4. Barnett J. A. 1976; The utilization of sugars by yeasts. Advances in Carbohydrate Chemistry and Biochemistry 32:125–234
    [Google Scholar]
  5. Barnett J. A. 1981; The utilization of disaccharides and some other sugars by yeasts. Advances in Carbohydrate Chemistry and Biochemistry 39:347–404
    [Google Scholar]
  6. Barnett J. A., Kornberg H. L. 1960; The utilization by yeasts of acids of the tricarboxylic acid cycle. Journal of General Microbiology 23:65–82
    [Google Scholar]
  7. Ciriacy M. 1976; Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae . Molecular and General Genetics 145:327–333
    [Google Scholar]
  8. Cohen G. N., Dautry-Varsat A. 1980; The aspartokinases-homoserine dehydrogenases of Escherichia coli . In Multifunctional Proteins, pp 49–121 Bisswanger H., Schmincke-Ott E. Edited by New York: Wiley;
    [Google Scholar]
  9. Colowick S. P. 1973; The hexokinases. In The Enzymes, 3rd edn. 9: pp 1–48 Boyer P. D. Edited by New York: Academic Press;
    [Google Scholar]
  10. Colquhoun D. 1971 Lectures on Biostatistics Oxford: Clarendon press;
    [Google Scholar]
  11. Dretzen G., Bellard M., Sassone-Cersi P., Chambon P. 1981; A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Analytical Biochemistry 112:195–198
    [Google Scholar]
  12. Entian K.-D. 1980; Genetic and biochemical evidence of hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Molecular and General Genetics 178:633–637
    [Google Scholar]
  13. Entian K.-D., Mecke D. 1982; Genetic evidence for a role of hexokinase isoenzyme PII in carbon catabolite repression in Saccharomyces cerevisiae . Journal of Biological Chemistry 257:870–874
    [Google Scholar]
  14. Entian K.-D., Kopetzki E., Fröhlich K.-U., Mecke D. 1984; Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeasts. Molecular and General Genetics 198:50–54
    [Google Scholar]
  15. Entian K.-D., Hilberg F., Opitz H., Mecke D. 1985; Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Molecular and Cellular Biology 5:3035–3040
    [Google Scholar]
  16. Fahrney D. E., Gold A. M. 1963; Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, ±-chymotrypsin, and trypsin. Journal of the American Chemical Society 85:997–1000
    [Google Scholar]
  17. Fernández R., Herrero P., Moreno F. 1985; Inhibition and inactivation of glucose-phosphorylat-ing enzymes from Saccharomyces cerevisiae by d-xylose. Journal of General Microbiology 131:2705–2709
    [Google Scholar]
  18. Fromm H. J., Zewe V. 1962; Kinetic studies of yeast hexokinase. Journal of Biological Chemistry 237:3027–3032
    [Google Scholar]
  19. Gancedo C., Schwerzmann N. 1976; Inactivation by glucose of phosphoenolpyruvate carboxykin-ase from Saccharomyces cerevisiae . Archives of Microbiology 109:221–225
    [Google Scholar]
  20. Gancedo C., Salas M. L., Giner A., Sols A. 1965; Reciprocal effects of carbon sources on the level of an AMP-sensitive fructose-1,6-diphosphatase and phosphofructokinase in yeast. Biochemical and Biophysical Research Communications 20:15–20
    [Google Scholar]
  21. Gancedo J.-M., Clifton D., Fraenkel D. G. 1977; Yeast hexokinase mutants. Journal of Biological Chemistry 252:4443–4444
    [Google Scholar]
  22. Haarasilta S., Oura E. 1975; On the activity and regulation of anaplerotic and gluconeogenetic enzymes during the growth process of baker’s yeast. European Journal of Biochemistry 52:1–7
    [Google Scholar]
  23. Hirai M., Ohtani E., Tanaka A., Fukui S. 1977; Glucose-phosphorylating enzymes of Candida yeasts and their regulation in vivo . Biochimica et biophysica acta 480:357–366
    [Google Scholar]
  24. Horton D., Walaszek Z. 1982; Tautomeric equilibria of some sugars by partially relaxed 13C pulse Fourier-transform, nuclear magnetic resonance spectroscopy. Carbohydrate Research 105:145–153
    [Google Scholar]
  25. Kalckar H. M. 1985; The discovery of hexokinase. Trends in Biochemical Sciences 10:291–293
    [Google Scholar]
  26. Kelly R. B., Cozzarelli N. R., Deutscher M. P., Lehmann J. R., Kornberg A. 1970; Enzymatic synthesis of deoxyribonucleic acid by polymerase at a single strand break. Journal of Biological Chemistry 245:39–45
    [Google Scholar]
  27. Kopetzki E., Entian K.-D. 1985; Glucose repression and hexokinase isoenzymes in yeast. Isolation and characterization of a modified hexokinase PII isoenzyme. European Journal of Biochemistry 146:657–662
    [Google Scholar]
  28. Kopperschläger G., Hofmann E. 1969; Über multiple Formen der Hexokinase in Hefe. European Journal of Biochemistry 9:419–423
    [Google Scholar]
  29. Lobo Z., Maitra P. K. 1977a; Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae . Archives of Biochemistry and Biophysics 182:639–645
    [Google Scholar]
  30. Lobo Z., Maitra P. K. 1977b; Resistance to 2-deoxyglucose in yeast: a direct selection of mutants lacking glucose phosphorylating enzymes. Molecular and General Genetics 157:297–300
    [Google Scholar]
  31. Lobo Z., Maitra P. K. 1977c; Genetics of yeast hexokinase. Genetics 86:727–744
    [Google Scholar]
  32. Mahlberg D., Höfer M., Täuber A. 1985; Sugar transport and hexose-ATP-kinase activity in a 2-deoxy-d-glucose tolerant mutant of the yeast Rhodotorula glutinis . Journal of General Microbiology 131:479–485
    [Google Scholar]
  33. Mahler H. R., Jaynes P. K., Mcdonough J. P., Hanson D. K. 1981; Catabolite repression in yeast: mediation by cAMP. Current Topics in Cellular Regulation 18:455–474
    [Google Scholar]
  34. Maitra P. K. 1970; A glucokinase from Saccharomyces cerevisiae . Journal of Biological Chemistry 245:2423–2431
    [Google Scholar]
  35. Maitra P. K. 1975; Glucokinase from yeast. Methods in Enzymology 42:25–30
    [Google Scholar]
  36. Maitra P. K., Lobo Z. 1983; Genetics of yeast glucokinase. Genetics 105:501–515
    [Google Scholar]
  37. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Mazón M. J., Gancedo J.-M., Gancedo C. 1975; Hexose kinases from Rhodotorula glutinis. Identification and properties of a hexokinase and a glucokinase. Archives of Biochemistry and Biophysics 167:452–457
    [Google Scholar]
  39. Mccann A. K., Barnett J. A. 1984; Starch utilization by yeasts: mutants resistant to carbon catabolite repression. Current Genetics 8:525–530
    [Google Scholar]
  40. Mccann A. K., Barnett J. A. 1986; The utilization of starch by yeasts. Yeast 2:109–115
    [Google Scholar]
  41. Mitchell P. 1949; A new technique for stirred aerated culture. Nature, London 164:846–847
    [Google Scholar]
  42. Muratsubaki H., Katsume T. 1979; Distribution of hexokinase isoenzymes depending on a carbon source in Saccharomyces cerevisiae . Biochemical and Biophysical Research Communications 86:1030–1036
    [Google Scholar]
  43. Polakis E. S., Bartley W. 1965; Changes in enzyme activities in Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochemical Journal 97:284–297
    [Google Scholar]
  44. Purich D. L., Fromm H. J., Rudolph F. B. 1973; The hexokinases: kinetic, physical and regulatory properties. Advances in Enzymology and Related Areas of Molecular Biology 39:249–326
    [Google Scholar]
  45. Ramel A. H., Rustum Y. M., Jones J. G., Barnard E. A. 1971; Yeast hexokinase. IV. Multiple forms of hexokinase in the yeast cell. Biochemistry 10:3499–3508
    [Google Scholar]
  46. Röber B., Stolle J., Reuter G. 1984; Eigenschaften der Hexokinase aus der SCP Hefe Candida maltosa H. Zeitschrift für allgemeine Mikrobiologie 24:619–627
    [Google Scholar]
  47. Schulze I. T., Gazith J., Gooding R. H. 1966; Hexokinase II. Bakers’ yeast (modifications in procedure). Methods in Enzymology 9:376–381
    [Google Scholar]
  48. Searle J. B. 1985; Isoenzyme variation in the common shrew (Sorex araneus) in Britain, in relation to karyotype. Heredity 55:175–180
    [Google Scholar]
  49. Slein M. W., Cori G. T., Cori C. F. 1950; A comparative study of hexokinase from yeast and animal tissues. Journal of Biological Chemistry 186:763–780
    [Google Scholar]
  50. Sols A., De La Fuente G., Villar-Palasi C., Asensio C. 1958; Substrate specificity and some other properties of baker’s yeast hexokinase. Biochimica et biophysica acta 30:92–101
    [Google Scholar]
  51. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  52. Witt I., Kronau R., Holzer H. 1966; Repression von Alkoholdehydrogenase, Malatdehydrogen-ase, Isocitratlyase und Malatsynthase in Hefe durch Glucose. Biochimica et biophysica acta 118:522–537
    [Google Scholar]
  53. Zimmermann F. K., Scheel I. 1977; Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Molecular and General Genetics 154:75–82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-2-381
Loading
/content/journal/micro/10.1099/00221287-133-2-381
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error