Location and Function of , a Gene Involved in the Regulation of Fructose Utilization by Free

Abstract

Procedures are described for the selection of mutants that constitutively take up and phosphorylate fructose, and convert it to fructose 1,6-bisphosphate. The phenotype of such mutants is described. The altered regulatory gene, , is highly co-transducible with and other markers located at min 2 on the genome. In merozygotes, is dominant to . Mutants can be readily isolated that are at 42 °C but at 30 °C; moreover, the integration of a Tn transposon in the genome at min 2converts strains to . It is therefore likely that the regulatory gene specifies a repressor protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-2-341
1987-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/2/mic-133-2-341.html?itemId=/content/journal/micro/10.1099/00221287-133-2-341&mimeType=html&fmt=ahah

References

  1. Amaral D., Kornberg H. L. 1975; Regulation of fructose uptake by glucose in Escherichia coli . Journal of General Microbiology 90:157–168
    [Google Scholar]
  2. Ashworth J. M., Kornberg H. L. 1966; The anaplerotic fixation of carbon dioxide by Escherichia coli . Proceedings of the Royal Society B 165:179–188
    [Google Scholar]
  3. Bachmann B. J. 1983; Linkage map of Escherichia coli K-12,. , edition 7.. Microbiological Reviews 47:180–230
    [Google Scholar]
  4. Benner D., Muller N., Boos W. 1985; Temperature-sensitive catabolite activator protein in Escherichia coli BUG 6. Journal of Bacteriology 161:347–352
    [Google Scholar]
  5. Böck A., Neidhardt F. C. 1966; Properties of a mutant of Escherichia coli with a temperature- sensitive fructose 1,6-diphosphate aldolase. Journal of Bacteriology 92:470–476
    [Google Scholar]
  6. Bolshakova T. N., Dobrynina O. Y., Gershanovitch V. N. 1979; Isolation and investigation of the Escherichia coli mutant with the deletion in the ptsH gene. FEBS Letters 107:169–172
    [Google Scholar]
  7. Cozzarelli N. R., Koch J. P., Hayashi S., Lin E. C. C. 1965; Growth stasis by accumulated L-a- glycerophosphate in Escherichia coli . Journal of Bacteriology 90:1325–1329
    [Google Scholar]
  8. Englesberg E., Anderson R. L., Weinberg R., Lee N., Hoffee P., Huttenhauer G., Boyer H. 1962; L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli . Journal of Bacteriology 84:137–146
    [Google Scholar]
  9. Ferenci T., Kornberg H. L. 1971a; Pathway of fructose utilization by Escherichia coli . FEBS Letters 13:127–130
    [Google Scholar]
  10. Ferenci T., Kornberg H. L. 1971b; Role of fructose 1,6-diphosphatase in fructose utilization by Escherichia coli . FEBS Letters 14:360–364
    [Google Scholar]
  11. Ferenci T., Kornberg H. L. 1973; The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochemical Journal 132:341–347
    [Google Scholar]
  12. Ferenci T., Kornberg H. L. 1974; The role of phosphotransferase-mediated syntheses of fructose 1-phosphate and fructose 6-phosphate in the growth of Escherichia coli on fructose. Proceedings of the Royal Society B 187:105–119
    [Google Scholar]
  13. Fraenkel D. G. 1968; The phosphoenolpyruvate- initiated pathway of fructose metabolism in Escherichia coli . Journal of Biological Chemistry 243:645–86463
    [Google Scholar]
  14. Geerse R. H., Ruig C. R., Schuitema A. R. J., Postma P. 1986; Relationship between pseudo- HPr and the PEP:fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli . Molecular and General Genetics 203:435–444
    [Google Scholar]
  15. Jones-Mortimer M. C., Kornberg H. L. 1974; Genetical analysis of fructose utilization by Escherichia coli . Proceedings of the Royal Society B 187:121–131
    [Google Scholar]
  16. Kornberg H. L. 1972; Nature and regulation of hexose uptake by Escherichia coli . In The Molecular Basis of Biological Transport pp. 157–180 Woessner J. W. JR Huijing F. Edited by New York & London: Academic Press;
    [Google Scholar]
  17. Kornberg H. L. 1973; Fine control of sugar uptake by Escherichia coli . Symposia of the Society for Experimental Biology 27:175–193
    [Google Scholar]
  18. Kornberg H. L. 1986; The roles of HPr and FPr in the utilization of fructose by Escherichia coli . FEBS Letters 194:12–15
    [Google Scholar]
  19. Kornberg H. L., Reeves R. E. 1972; Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli . Biochemical Journal 128:1339–1344
    [Google Scholar]
  20. Kurahashi K., Wahba A. J. 1958; Interference with growth of certain Escherichia coli mutants by galactose. Biochimica et biophysica acta 30:298–302
    [Google Scholar]
  21. London J., Hausman S. 1982; Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei . Journal of Bacteriology 150:657–661
    [Google Scholar]
  22. Magasanik B. 1961; Catabolite repression. Cold Spring Harbor Symposia on Quantitative Biology 26:249–254
    [Google Scholar]
  23. Mcginnis J. F., Paigen K. 1969; Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization. Journal of Bacteriology 100:902–913
    [Google Scholar]
  24. Mcginnis J. F., Paigen K. 1973; Site of catabolite inhibition of carbohydrate metabolism. Journal of Bacteriology 114:885–887
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  26. Reiner A. M. 1977; Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol and sorbitol phosphotransferases of Escherichia coli . Journal of Bacteriology 132:166–173
    [Google Scholar]
  27. Saier M. H., Simoni R. D., Roseman S. 1970; The physiological behaviour of Enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system. Journal of Biological Chemistry 245:5870–5873
    [Google Scholar]
  28. Saier M. H., Simoni R. D., Roseman S. 1976; Sugar transport. Properties of bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Journal of Biological Chemistry 251:6584–6597
    [Google Scholar]
  29. Solomon E., Lin E. C. C. 1972; Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. Journal of Bacteriology 111:566–574
    [Google Scholar]
  30. Waygood E. B. 1980; Resolution of the phosphoenolpyruvate : fructose phosphotransferase system of Escherichia coli into two components: enzyme II fructose and fructose-induced HPr-like protein (FPr). Canadian Journal of Biochemistry 58:1144–1146
    [Google Scholar]
  31. Waygood E. B., Meadow N. D., Roseman S. 1979; Modified assay procedure for the phosphotransferase system in enteric bacteria. Analytical Biochemistry 95:293–304
    [Google Scholar]
  32. Waygood E. B., Mattoo R. L., Peri K. G. 1984; Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli.Evidence for mannose, jjjFructose^ jjjGiucuoi^ ancj the phosphorylation of Enzyme HManmto1 and Enzyme n^-A"tyigiucosamine. Journal of Cellular Biochemistry 25:139–159
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-2-341
Loading
/content/journal/micro/10.1099/00221287-133-2-341
Loading

Data & Media loading...

Most cited Most Cited RSS feed