1887

Abstract

The mutation in the yeast causes cell cycle arrest late in nuclear division when cells are shifted from the permissive temperature of 25 °C to the restrictive temperature of 36·5 °C. Cell cycle arrest at 36·5 °C is dependent upon the carbon source used: a shift-up in glucose containing media results in cell cycle blockade, whereas a shift-up in ethanol, fructose, glycerol, glycerol plus ethanol, or mannose does not. Metabolite analyses showed accumulation of glucose 6-phosphate in a -bearing strain after a temperature shift-up in glucose-containing medium. Thermal denaturation studies and kinetic measurements indicate the existence of two isoenzymes of phosphoglucose isomerase (EC 5.3.1.9); one of which is apparently altered in the temperature-sensitive cell cycle mutant. We propose that the gene products of both the and genes are required for cell cycle progression in glucose media and that the gene product has a regulatory function over the gene product.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-1-135
1987-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/1/mic-133-1-135.html?itemId=/content/journal/micro/10.1099/00221287-133-1-135&mimeType=html&fmt=ahah

References

  1. Barker D. G., Johnson A. L., Johnston L. H. 1985; An improved assay for DNA ligase reveals temperature-sensitive activity in cdc9 mutants of Saccharomyces cerevisiae. Molecular and General Genetics 200:458–462
    [Google Scholar]
  2. Bergmeyer H. U. 1963 Methods of Enzymatic Analysis London: Academic Press;
    [Google Scholar]
  3. Casperson G. F., Walker N., Bourne H. R. 1985; Isolation of the gene encoding adenylate cyclase in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 82:5060–5063
    [Google Scholar]
  4. Ciriacy M. 1979; Isolation and characterization of further cis- and tram-regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Molecular and General Genetics 176:427–431
    [Google Scholar]
  5. Ciriacy M., Breitenbach I. 1979; Physiological effects of seven different blocks in glycolyisis in Saccharomyces cerevisiae. Journal of Bacteriology 139:152–160
    [Google Scholar]
  6. Clifton D., Weinstock S. B., Fraenkel D. G. 1978; Glycolysis mutants in Saccharomyces cerevisiae. Genetics 88:1–11
    [Google Scholar]
  7. Dickinson J. R. 1984; The biochemical genetics of cell cycle control in eukaryotes. Trends in Biochemical Sciences 9:269–271
    [Google Scholar]
  8. Dixon M., Webb E. C. 1964 Enzymes London: Longman;
    [Google Scholar]
  9. Entian K. -D., Frohlich K. -U. 1984; Sacharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. Journal of Bacteriology 158:29–35
    [Google Scholar]
  10. Entian K. -D., Kopetzki E., Frohlich K. -U., Mecke D. 1984; Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeasts. Molecular and General Genetics 198:50–54
    [Google Scholar]
  11. Fraenkel D. G. 1982; Carbohydrate metabolism. In The Molecular Biology of the Yeast Saccharomyces 2 Metabolism and Gene Expression pp. 1–37 Strathern J. N., Jones E. W., Broach J. R. Edited by Broach New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Frohlich K. -U., Entian K. -D., Mecke D. 1984; Cloning and restriction analysis of the hexokinase PII gene of the yeast Saccharomyces cerevisiae. Molecular and General Genetics 194:144–148
    [Google Scholar]
  13. Game J. C. 1976; Yeast cell cycle mutant cdc21 is a temperature-sensitive thymidylate auxotroph. Molecular and General Genetics 146:313–315
    [Google Scholar]
  14. Herrera L. S., Pascual C. 1978; Genetical and biochemical studies of glucosephosphate isomerase deficient mutants in Saccharomyces cerevisiae. Journal of General Microbiology 108:305–310
    [Google Scholar]
  15. Johnston L. H., Nasmyth K. A. 1978; Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature; London: 274891–893
    [Google Scholar]
  16. Jong A. Y. S., Kuo C. L., Campbell J. L. 1984; The CDC8 gene of yeast encodes thymidylate kinase. Journal of Biological Chemistry 259:1052–1059
    [Google Scholar]
  17. Kawasaki G. H. 1979 Karyotypic instability and carbon source effects in cell cycle mutants of Saccharomyces cerevisiae PhD thesis University of Washington, Seattle; USA:
    [Google Scholar]
  18. Kempe T. D., Nakagawa Y., Noltmann E. A. 1974a; Physical and chemical properties of yeast phosphoglucose isomerase isoenzymes. Journal of Biological Chemistry 249:4617–4624
    [Google Scholar]
  19. Kempe T. D., Gee D. M., Hathaway G. M., Noltmann E. A. 1974b; Subunit and peptide compositions of yeast phosphoglucose isomerase isoenzymes. Journal of Biological Chemsitry 249:4625–4633
    [Google Scholar]
  20. Maitra P. K. 1971; Glucose and fructose metabolism in a phosphoglucoseisomeraseless mutant of Saccharomyces cerevisiae. Journal of Bacteriology 107:759–769
    [Google Scholar]
  21. Maitra P. K., Lobo Z. 1971a; A kinetic study of glycolytic enzyme synthesis in yeast. Journal of Biological Chemistry 246:475–488
    [Google Scholar]
  22. Maitra P. K., Lobo Z. 1971b; Control of glycolytic enzyme synthesis in yeast by products of the hexokinase reaction. Journal of Biological Chemistry 246:489–499
    [Google Scholar]
  23. Mason P., Jacquemin J. M., Culot M. 1984; Molecular cloning of the tsm0185 gene responsible for adenylate cyclase activity in Saccharomyces cerevisiae. Annales de microbiologie 135A:343–351
    [Google Scholar]
  24. Nadkarni M., Parmar L., Lobo Z., Maitra P. K. 1984; Mutations in the regulatory subunit of soluble phosphofrutokinase from yeast. FEBS Letters 175:294–298
    [Google Scholar]
  25. Nakagawa Y., Noltmann E. A. 1967; Multiple forms of yeast phosphoglucose isomerase. I. Resolution of the crystalline enzyme into three isoenzymes. Journal of Biological Chemistry 242:4782–4788
    [Google Scholar]
  26. Pringle J. R., Hartwell L. H. 1981; The Saccharomyces cerevisiae cell cycle. In The Molecular Biology of the Yeast Saccharomyces 1 Life Cycle and Inheritance pp. 97–142 Strathern J. N., Jones E. W., Broach J. R. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Reed S. I., Hadwiger J. A., Lorincz A. T. 1985; Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proceedings of the National Academy of Sciences of the United States of America 82:4055–4059
    [Google Scholar]
  28. Schmitt H. D., Zimmermann F. K. 1982; Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. Journal of Bacteriology 151:1146–1152
    [Google Scholar]
  29. Sclafani R. A., Fangman W. L. 1984; Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proceedings of the National Academy of Sciences of the United States of America 81:5821–5825
    [Google Scholar]
  30. Zimmermann F. K. 1985; Informal meeting of German-speaking yeast geneticists, physiologists and biotechnologists at Ober-Ramstadt, 2 and 3 November 1984. Yeast 1:79–81
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-1-135
Loading
/content/journal/micro/10.1099/00221287-133-1-135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error