Applied Electrical Fields Polarize the Growth of Mycelial Fungi Free

Abstract

Summary: Mycelial fungi generate endogenous electrical fields which are associated with polarized tip growth. Here we show that applied electrical fields can dramatically affect the polarity of growth of a variety of filamentous fungi including and The precise behaviour of each fungus when exposed to an electric field was different; however the sites of germ tube formation and branching, the direction of hyphal extension and the frequency of branching and germination could all be affected. and grew and formed branches towards the anode while and exhibited tropisms towards the cathode. Galvanotropism of hyphae and branches of was in opposite directions. Germ tube formation from conidia of was highly polarized in electrical fields whereas fields of a similar strength had little effect on the polarity of germ tube formation in Hyphae became aligned perpendicularly as they grew longer and as the field strength increased. It is suggested that this perpendicularly orientated extension relieves growth-inhibiting perturbations of the membrane potential in cells which had been aligned parallel to the field. These results are discussed in relation to the hypothesis that the polarity of hyphal growth is under electrical control.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-9-2515
1986-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/9/mic-132-9-2515.html?itemId=/content/journal/micro/10.1099/00221287-132-9-2515&mimeType=html&fmt=ahah

References

  1. Armbruster B. L., Weisenseel M. H. 1983; Ionic currents traverse growing hyphae and sporangia of the mycelial water mould Achlya debaryana. Protoplasma 115:65–69
    [Google Scholar]
  2. Bentrup F. W. 1968; Die Morphogenese pflanzlicher Zellen im elektrischen Feld. Zeitschrift für Pflanzenphysiologie 59:309–339
    [Google Scholar]
  3. Brawley S. H., Robinson K. R. 1985; Cytochalasin treatment disrupts the endogenous currents associated with cell polarisation in fucoid zygotes: studies on the role of f-actin in embryogenesis. Journal of Cell Biology 100:1173–1184
    [Google Scholar]
  4. Chen T. H., Jaffe L. F. 1979; Forced calcium entry and polarised growth of Funaria spores. Planta 144:401–406
    [Google Scholar]
  5. Cooper M. S., Keller R. E. 1984; Perpendicular orientation and directional migration of amphibian neural crest cells in DC electrical fields. Proceedings of the National Academy of Sciences of the United States of America 81:160–164
    [Google Scholar]
  6. de Vries S. C., Wessels J. G. H. 1982; Polarized outgrowth of hyphae by constant electrical fields during reversion of Schizophyllum commune protoplasts. Experimental Mycology 6:95–98
    [Google Scholar]
  7. Gooday G. W. 1975; Chemotaxis and chemotropism in fungi and algae. In Primitive Sensory and Communication Systems pp 155–204
    [Google Scholar]
  8. Gooday G. W. 1983; The hyphal tip. In Fungal Differentiation: a Contemporary Synthesis pp 315–356
    [Google Scholar]
  9. Gow N. A. R. 1984; Transhyphal electrical currents in fungi. Journal of General Microbiology 130:3313–3318
    [Google Scholar]
  10. Gow N. A. R., Mcgillivray A. M. 1986; Ion currents, electrical fields and the polarized growth of fungal hyphae. In Ionic Currents in Development (Proceedings of a Satellite Meeting to the 10th International Congress of the International Society of Developmental Biologists, University of California, Los Angeles) pp 81–88
    [Google Scholar]
  11. Gow N. A. R., Kropf D. L., Harold F. M. 1984; Growing hyphae of Achlya bisexualis generate a longitudinal pH gradient in the surrounding medium. Journal of General Microbiology 130:2967–2974
    [Google Scholar]
  12. Grove S. N. 1978; The cytology of hyphal tip growth. In The Filamentous Fungi, vol. 3 pp 28–50
    [Google Scholar]
  13. Harold F. M., Kropf D. L., Caldwell J. C. 1985 ɑ; Why do fungi drive electric currents through themselves? Experimental Mycology. 9:183–186
    [Google Scholar]
  14. Harold F. M., Schreurs W. J., Harold R. L., Caldwell J. C. 1985 b; Electrobiology of fungal hyphae. Microbiological Sciences 2:363–366
    [Google Scholar]
  15. Horwitz B. A., Weisenseel M. H., Dorn A., Gressel J. 1984; Electric currents around growing Trichoderma hyphae, before and after photoinduction of conidiation. Plant Physiology 74:912–916
    [Google Scholar]
  16. Jaffe L. F. 1966; Electrical currents through the developing Fucus egg. Proceedings of the National Academy of Sciences of the United States of America 56:1102–1109
    [Google Scholar]
  17. Jaffe L. F. 1977; Electrophoresis along cell membranes. Nature, London 265:600–602
    [Google Scholar]
  18. Jaffe L. F. 1966; The role of ionic currents in establishing developmental pattern. Philosophical Transactions of the Royal Society B 295:553–566
    [Google Scholar]
  19. Jaffe L. F., Robinson K. R., Nuccitelli R. 1974; Local cation entry and self-electrophoresis as an intracellular localization mechanisms. Annals of the New York Academy of Sciences372–389
    [Google Scholar]
  20. Kropf D. L. 1986; Cytoplasmic electric fields within growing hyphae of the water mould Achlya. Journal of Cell Biology 102:1209–1216
    [Google Scholar]
  21. Kropf D. L., Lupa M. D. A., Caldwell J. C., Harold F. M. 1983; Cell polarity: endogenous ion currents precede and predict branching in the water mold Achlya. Science 220:1385–1387
    [Google Scholar]
  22. Kropf D. L., Caldwell J. C., Gow N. A. R., Harold F. M. 1984; Transcellular ion currents in the water mold Achlya Amino acid proton symport as a mechanism of current entry. Journal of Cell Biology 99:486–496
    [Google Scholar]
  23. Lund E. J. 1923; Electrical control of organic polarity in the egg of Fucus. Botanical Gazette 76:288–301
    [Google Scholar]
  24. Manavathu E. K., Thomas D. D. S. 1985; Chemotropism of Achlya ambisexualis to methionine and methionyl compounds. Journal of General Microbiology 131:751–756
    [Google Scholar]
  25. Marsh G., Beams H. W. 1945; The orientation of pollen tubes of Vinca in the electric current. Journal of Cellular and Comparative Physiology 25:195–204
    [Google Scholar]
  26. Miller A. L., Raven J. A., Sprent J. I., Weisenseel M. H. 1986; Endogenous ion currents traverse growing roots and root hairs of Trifolium repens. Plant Cell and Environment 9:79–83
    [Google Scholar]
  27. Musgrave A., Ero L., Scheffer R., Oehlers E. 1977; Chemotropism of Achlya bisexualis germ hyphae to casein hydrolysate and amino acids. Journal of General Microbiology 101:65–70
    [Google Scholar]
  28. Nuccitélli R. 1978; Ooplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Developmental Biology 62:13–33
    [Google Scholar]
  29. Nuccitelli R. 1983; Transcellular ion currents Signals and effectors of cell polarity. Modem Cell Biology 2:451–481
    [Google Scholar]
  30. Patel N., Poo M. M. 1982; Orientation of neurite growth by extracellular electric fields. Journal of Neurosciences 2:483–496
    [Google Scholar]
  31. Peng H. B., Jaffe L. F. 1976; Polarization of fucoid eggs by steady electrical fields. Developmental Biology 53:277–284
    [Google Scholar]
  32. Robinson K. R. 1985; The responses of cells to electrical fields: a review. Journal of Cell Biology 101:2023–2027
    [Google Scholar]
  33. Robinson K. R., Jaffe L. F. 1975; Polarizing fucoid eggs drive a calcium current through themselves. Science 187:70–72
    [Google Scholar]
  34. Sand O. 1973; On orientation of rhizoid outgrowth of Ulva mutabilis by applied electric fields. Experimental Cell Research 76:444–446
    [Google Scholar]
  35. Slayman C. L., Slayman C. W. 1962; Measurements of membrane potential in Neurospora. Science 136:876–877
    [Google Scholar]
  36. Trinci A. P. J. 1979; The duplication cycle and branching in fungi. In Fungal Walls and Hyphal Growth pp 319–358
    [Google Scholar]
  37. Vogel H. J. 1956; A convenient growth medium for Neurospora. Microbial Genetics Bulletin 13:42–44
    [Google Scholar]
  38. Weisenseel M. H., Nuccitélli R., Jaffe L. F. 1975; Large electrical currents traverse growing pollen tubes. Journal of Cell Biology 66:556–567
    [Google Scholar]
  39. Weisenseel M. H., Dorn A., Jaffe L. F. 1979; Natural H+ currents traverse growing roots of barley (Hordeum vulgare L). Plant Physiology 64:512–518
    [Google Scholar]
  40. Woodruff R. I., Telfer W. H. 1980; Electrophoresis of proteins in intercellular bridges. Nature, London 286:84–86
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-9-2515
Loading
/content/journal/micro/10.1099/00221287-132-9-2515
Loading

Data & Media loading...

Most cited Most Cited RSS feed