1887

Abstract

Summary: mt-2 (ATCC 33015) carrying the TOL plasmid pWW0 could adapt to growth on the aromatic amines aniline and -and -toluidine. In strain UCC2, a derivative adapted to rapid growth on these compounds, they were oxidatively deaminated to catechol or 4-methylcatechol, which in turn were dissimilated by a -cleavage pathway. The aniline/toluidine oxygenase and the -cleavage pathway enzymes were inducible by aromatic amines. Evidence is presented that in strain UCC2, plasmid pWWO has undergone deletion of its catabolic genes, and that it is a novel plasmid, pTDNl, which is involved in the catabolism of aniline and -and -toluidine. The -cleavage pathway genes which are carried by pTDN 1 were shown not to have originated in pWW0.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-8-2209
1986-08-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/8/mic-132-8-2209.html?itemId=/content/journal/micro/10.1099/00221287-132-8-2209&mimeType=html&fmt=ahah

References

  1. Anson J. G., Mackinnon G. 1984; Novel Pseudomonas plasmid involved in aniline degradation. Applied and Environmental Microbiology 48:868–869
    [Google Scholar]
  2. Aoki K., Shinke R., Nishira H. 1983; Metabolism of aniline by Rhodococcus erythropolis AN-13. Agricultural and Biological Chemistry 47:1611–1616
    [Google Scholar]
  3. Aoki K., Ohtsuka K., Shinke R., Nishira H. 1984; Rapid biodegradation of aniline by Fraten-uria species ANA-18 and its aniline metabolism. Agricultural and Biological Chemistry 48:865–872
    [Google Scholar]
  4. Appel M., Raabe T., Lingens F. 1984; Degradation of o-toluidine by Rhodococcus rhodochrous . FEMS Microbiology Letters 24:123–126
    [Google Scholar]
  5. Bayley S. A., Duggleby C. J., Worsey M. J., Williams P. A., Hardy K. G., Broda P. 1977; Twomodes of loss of the TOL function from Pseudomonas putida mt-2. Molecular and General Genetics 154:203–204
    [Google Scholar]
  6. Franklin F. C. H., Bagdasarian M., Bagdasarian M. M., Timmis K. N. 1981; Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta-cleavage pathway. Proceedings of the National Academy of Sciences of the United States of America 78:7458–7462
    [Google Scholar]
  7. Franklin F. C. H., Lehrbach P. R., Lurz R., Rueckert B., Bagdasarian M., Timmis K. N. 1983; Localisation and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. Journal of Bacteriology 154:676685
    [Google Scholar]
  8. Harayama S., Lehrbach P. R., Timmis K. N. 1984; Transposon mutagenesis analysis of metacleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2. Journal of Bacteriology 160:251–255
    [Google Scholar]
  9. Helm V., Reber H. 1979; Investigation of the regulation of aniline utilisation in Pseudomonas multivorans strain AN1. European Journal of Applied Microbiology and Biotechnology 7:191–199
    [Google Scholar]
  10. Hughes E. J. L., Bayly R. C., Skurray R. A. 1984; Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate and p-cresol via catechol meta-cleavage pathways in Alcaligenes eutrophus . Journal of Bacteriology 158:79–83
    [Google Scholar]
  11. Inouye S., Nakazawa A., Nakazawa T. 1983; Molecular cloning of regulatory gene xyl R and operator-promoter regions of the xyl ABC and xyl DEGF operons of the TOL plasmid. Journal of Bacteriology 155:1192–1199
    [Google Scholar]
  12. Kaminski U., Janke D., Prauser H., Fritche W. 1983; Degradation of aniline and monochloro-anilines by Rhodococcus sp. AN 117 and a pseudomonad : a comparative study. Zeitschrift fur allge-meine Mikrobiologie 23:235–246
    [Google Scholar]
  13. Keil H., Lebens M. R., Williams P. A. 1985; TOL plasmid pWW15 contains two non-homo-logous independently regulated catechol 2,3-oxygenase genes. Journal of Bacteriology 163:248–255
    [Google Scholar]
  14. Kunz D. A., Chapman P. J. 1981; Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. Journal of Bacteriology 146:179–191
    [Google Scholar]
  15. Latorre J., Reineke W., Knackmuss H. J. 1984; Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Archives of Microbiology 140:159–165
    [Google Scholar]
  16. Murray K., Williams P. A. 1974; Role of catechol and methylcatechols as inducers of aromatic metabolism in Pseudomonas putida . Journal of Bacteriology 117:1153–1157
    [Google Scholar]
  17. Pickup R. W., Williams P. A. 1982; Spontaneous deletions in the TOL plasmid pWW20 which give rise to the B3 regulatory mutants of Pseudomonas putida MT20. Journal of General Microbiology 128:1385–1390
    [Google Scholar]
  18. Raabe T., Appel M., Lingens F. 1984; Degrada-tion of p-toluidine by Pseudomonas testosteroni . FEMS Microbiology Letters 25:61–64
    [Google Scholar]
  19. Reber H., Helm V., Karanth N. G. K. 1979; Comparative studies on the metabolism of aniline and chloroanilines by Pseudomonas multivorans strains AN1. European Journal of Applied Microbiology and biotechnology 7:181–189
    [Google Scholar]
  20. Reineke W., Knackmuss H. J. 1979; Construction of haloaromatics utilising bacteria. Nature, London 277:385–386
    [Google Scholar]
  21. Reineke W., Knackmuss H. J. 1980; Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. Journal of Bacteriology 142:467–473
    [Google Scholar]
  22. Sala-Trepat J. M., Evans W. C. 1971; The metacleavage of catechol by Azotobacter species: the 4-oxalocrotonate pathway. European Journal of Biochemistry 20:400–413
    [Google Scholar]
  23. Schaffer H. E., Sederoff R. R. 1981; Improved estimation of DNA fragment length from agarose gels. Analytical Biochemistry 115:113–122
    [Google Scholar]
  24. Schwien U., Schmidt E. 1982; Improved degradation of monochlorophenols by a constructed strain. Applied and Environmental Microbiology 44:33–39
    [Google Scholar]
  25. Surotseva E. G., Volnova A. I., Shatskaya T. Ya. 1980; Degradation of monochloroanilines by Alcaligenes faecalis . Mikrobiologiya 49:351–359
    [Google Scholar]
  26. Wheatcroft R., Williams P. A. 1981; Rapid methods for the study of both stable and unstable plasmids in Pseudomonas . Journal of General Microbiology 124:433–437
    [Google Scholar]
  27. Williams P. A., Murray K. 1974; Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. Journal of Bacteriology 120:416–423
    [Google Scholar]
  28. Worsey M. J., Williams P. A. 1975; Metabolism of toluene and the xylenes by Pseudomonas putida(arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 124:7–13
    [Google Scholar]
  29. Worsey M. J., Williams P. A. 1977; Characterisation of a spontaneously occurring mutant of the TOL 20 plasmid in Pseudomonas putida MT20: possible regulatory implications. Journal of Bacteriology 130:1149–1158
    [Google Scholar]
  30. Worsey M. J., Franklin F. C. H., Williams P. A. 1978; Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2. Journal of Bacteriology 134:757–764
    [Google Scholar]
  31. Zeyer J., Wasserfallen A., Timmis K. N. 1985; Microbial mineralisation of ring-substituted anilines through an ortho-cleavage pathway. Applied and Environmental Microbiology 50:447–453
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-8-2209
Loading
/content/journal/micro/10.1099/00221287-132-8-2209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error