1887

Abstract

Summary: The phospholipid ester-linked fatty acids were examined in four strains (2ac9, AcBa, 3acl0 and 4acll), a -like ‘fat vibrio’ (AcKo) and (5575), which are all sulphate-reducing bacteria that oxidize acetate. A thermophilic sulphate reducer, , and two sulphur-reducing bacteria, (11070) and a -like spirillum (5175), were also studied. The spp. were characterized by significant quantities of 10-methylhexadecanoic acid. Other 10-methyl fatty acids were also detected in spp. No 10-methyl fatty acids were detected in the other organisms examined, supporting the use of 10-methylhexadecanoic acid as a biomarker for . High levels of cyclopropyl fatty acids, including two isomers of both methylenehexadecanoic (cyl7:0) and methyleneheptadecanoic (cyl8:0) acids, were also characteristic of spp. The influence of the volatile fatty acids (VFA) propionate, isobutyrate, isovalerate and 2-methylbutyrate on the lipid fatty acid distribution was studied with two strains (2ac9, AcBa) and . Although these sulphate reducers cannot oxidize the VFA, their presence in the acetate growth medium caused a shift in the fatty acid distribution in favour of odd-numbered and branched chains by apparent direct incorporation into the fatty acids as chain initiators. The strains were distinguished from other sulphide-forming bacteria by the percentage of unsaturated and the percentage of branched fatty acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-7-1815
1986-07-01
2021-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/7/mic-132-7-1815.html?itemId=/content/journal/micro/10.1099/00221287-132-7-1815&mimeType=html&fmt=ahah

References

  1. Akamatsu Y., Law J. H. 1970; Enzymatic alkylation of phospholipid fatty acid chains by extracts of Mycobacterium phlei. Journal of Biological Chemistry 245:701–708
    [Google Scholar]
  2. Banat I. M., Nedwell D. B. 1983; Mechanismof turnover of C2−C3 fatty acids in high sulphate and low sulphate anaerobic sediments. FEMS Microbiology Letters 17:107–110
    [Google Scholar]
  3. Banat I. M., Lindstrom E. B., Nedwell D. B., Balba M. T. 1981; Evidence for coexistence of two distinct functional groups of sulphate-reducing bacteria insalt marsh sediment. Applied and Environmental Microbiology 42:985–992
    [Google Scholar]
  4. Blaser M. J., Moss C. W., Weaver R. E. 1980; Cellular fatty acid composition of Campylobacter fetus. Journal of Clinical Microbiology 11:448–451
    [Google Scholar]
  5. Bligh E. G., Dyer W. M. 1959; A rapid method of lipid extraction and purification. Canadian Journal of Biochemical Physiology 35:911–917
    [Google Scholar]
  6. Bobbie R. J., White D. C. 1980; Characterization of benthic microbial community structure by high resolution gas chromatography of fatty acid methyl esters. Applied and Environmental Microbiology 39:1212–1222
    [Google Scholar]
  7. Boon J. J., De Leeuw J. W., Hoek G. J., Vosjan J. H. 1977; Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched beta-hydroxy acids in Desulfovibrio desulfuricans. Journal of Bacteriology 129:1183–1191
    [Google Scholar]
  8. Brandis A., Thauer R. K. 1981; Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. Journal of General Microbiology 126:249–252
    [Google Scholar]
  9. Campbell I. M., Naworal J. 1969; Mass spectral discrimination between monoenoic and cyclopropanoid, and between normal, iso, and anteiso fatty acid methyl esters. Journal of Lipid Research 10:589–592
    [Google Scholar]
  10. Dinh-Nguyen N., Ryhage R., Stallberg-Sten-Hagen S., Stenhagen E. 1961; Mass spectrometric studies. VIII. A study of normal long chain methyl esters and hydrocarbons under electron impact with the aid of deuterium-substituted compounds. Arkiv for Kemi 18:393–399
    [Google Scholar]
  11. Dunkelblum E., Tan S. H., Silk P. J. 1985; Double bond location in monounsaturated fatty acids by dimethyl disulphide derivatization and mass spectrometry : application to analysis of fatty acids in pheromone glands of four lepidoptera. Journal of Chemical Ecology 11:265–277
    [Google Scholar]
  12. Edlund A., Nichols P. D., Roffey R., White D. C. 1985; Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. Journal of Lipid Research 26:982–988
    [Google Scholar]
  13. Fowler V. J., Widdel F., Pfennig N., Woese C. R., Stackebrandt E. 1985; Phylogenetic relationships of sulphate- and sulphur-eubacteria. Systematic and Applied Microbiology (in the Press)
    [Google Scholar]
  14. Gehron M. J., White D. C. 1983; Sensitive assay of phospholipid glycerol in environmental samples. Journal of Microbiological Methods 1:23–32
    [Google Scholar]
  15. Goodfellow M., Haynes J. A. 1984; Actinomycetes in marine sediments. In Biological, Biochemical, and Biomedical Aspects of Actinomycetes pp 452472 Edited by Ortiz-Ortiz L., Bojalil L. F., Yakoleff V. New York: Academic Press;
    [Google Scholar]
  16. Ingram L. O., Chevalier L. S., Gabbay E. J., Ley K.D., Winters K. 1977; Propionate-induced synthesis of odd-chain length fatty acids by Escherichia coli. Journal of Bacteriology 131:1023–1025
    [Google Scholar]
  17. Ingvorsen K., Zehnder A. J. B., Jørgensen B. B. 1984; Kinetics of sulphate and acetate uptake by Desulfobacter postgatei. Applied and Environmental Microbiology 47:403–408
    [Google Scholar]
  18. Jørgensen B. B. 1977; The sulphur cycle of a coastal marine sediment (Limfjord, Denmark). Limnology and Oceanography 22:814–832
    [Google Scholar]
  19. Jørgensen B. B. 1982; Ecology of the bacteria of the sulphur cycle with special reference to anoxic/oxic interface environments. Philosophical Transactions of the Royal Society Series B 298:543–561
    [Google Scholar]
  20. Kaneda T. 1977; Fatty acids of the genus Bacillus: an example of branched chain preference. Bacteriological Reviews 41:391–418
    [Google Scholar]
  21. Kaneshiro T., Marr A. G. 1961; Cis-9,10-methylene hexadecanoic acid from the phospholipids of Escherichia coli. Journal of Biological Chemistry 256:2615–2619
    [Google Scholar]
  22. Kidwell D. A., Bleman K. 1982; Determination of double bond position and geometry of olefins by mass spectroscopy of their Diels-Alder adducts. Analytical Chemistry 54:2462–2465
    [Google Scholar]
  23. Kristjansson J. K., Schönheit P., Thauer R. K. 1982; Different Ks values for hydrogen of methano-genic bacteria and sulfate-reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Archives of Microbiology 131:278–282
    [Google Scholar]
  24. Kroppenstedt R. M., Kutzner H. J. 1978; Biochemical taxonomy of some problem actinomycetes. Zentralblatt für Bakteriologie. Mikrobiologie und Hygiene (Abteilung I) supplement 6:125–133
    [Google Scholar]
  25. Lechevalier M. P. 1976; Lipids in bacterial taxonomy—a taxonomist’s view. CRC Critical Reviews in Microbiology 7:109–210
    [Google Scholar]
  26. Loveley D. R., Dwyer D. F., Klug M. J. 1982; Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediment. Applied and Environmental Microbiology 43:1373–1379
    [Google Scholar]
  27. Mccloskey J. A., Law J. H. 1967; Ring location in cyclopropane fatty acid esters by a mass spectrometric method. Lipids 2:225–230
    [Google Scholar]
  28. Makula R. A., Finnerty W. R. 1974; Phospholipid composition of Desulfovibrio species. Journal of Bacteriology 120:523–529
    [Google Scholar]
  29. Makula R. A., Finnerty W. R. 1975; Isolation and characterization of an ornithine-containing lipid from Desulfovibrio gigas. Journal of Bacteriology 120:1279–1283
    [Google Scholar]
  30. Minnikin D. E., Goodfellow M., Collins M. D. 1978; Lipid composition in the classification and identification of Coryneforms and related taxa. In Coryneform Bacteria pp 85–160 Edited by Bousfield I. J., Calley A. G. London: Academic Press;
    [Google Scholar]
  31. Nichols P. D., Shaw P. M., Johns R. B. 1985; Determination of monoenoic double bond position and geometry in complex microbial environmental samples by capillary GC-MS of their Diels-Alder adducts. Journal of Microbiological Methods 3:311–319
    [Google Scholar]
  32. Parkes R. J., Taylor J. 1983; The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuarine, Coastal and Shelf Science 16:173–189
    [Google Scholar]
  33. Perry G. J., Volkman J. K., Johns R. B. 1979; Fatty acids of bacterial origin in contemporary marine sediments. Geochimica et cosmochimica acta 43:1715–1725
    [Google Scholar]
  34. Pfennig N., Biebl H. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulphur reducing, acetate-oxidising bacterium. Archives of Microbiology 110:3–12
    [Google Scholar]
  35. Pfennig N., Biebl H. 1981; The dissimilatory sulfur-reducing bacteria. In The Prokaryotes vol 1 pp 941–947 Edited by Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. Berlin & New York: Springer-Verlag;
    [Google Scholar]
  36. Pfennig N., Widdel F., Truper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes vol 1 pp 926–940 Edited by Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. Berlin & New York: Springer-Verlag;
    [Google Scholar]
  37. Postgate J. R. 1984 The Sulphate-reducing Bacteria, 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  38. Rohwedder W. D., Mabrouk A. F., Selke E. 1965; Mass spectrometric studies of unsaturated methyl esters. Journal of Physical Chemistry 69:1711–1715
    [Google Scholar]
  39. Rozanova E. P., Khudyakova A. I. 1974; A new non-spore-forming thermophilic sulfate-reducing organism, Destdfovibrio thermophilus nov. spec. Microbiology 43:908–912
    [Google Scholar]
  40. Ryhage R., Stenhagen E. 1958; Mass spectrometric studies. I. Methyl esters of saturated normal chain carboxylic acids. Archiv for Kemi 13:523–534
    [Google Scholar]
  41. Sansone F. J., Martens C. S. 1982; Volatile fatty acid cycling in organic rich marine sediments. Geochimica et cosmochimica acta 46:1575–1589
    [Google Scholar]
  42. Schönheit P., Kristjansson J. K., Thauer R. K. 1982; Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Archives of Microbiology 132:285–288
    [Google Scholar]
  43. Silvius J. R., Mcelhaney R. N. 1979a; Effects of phospholipid acy1 chain structure on physical properties. I. Isobranched phosphatidylcholines. Chemistry and Physics of Lipids 24:287–296
    [Google Scholar]
  44. Silvius J. R., Mcelhaney R. N. 1979b; The effects of phospholipid acy1 chain structure on the thermotropic phase properties. 2. Phosphatidylcholines with unsaturated or cyclopropane acy1 chains. Chemistry and Physics of Lipids 25:125–134
    [Google Scholar]
  45. Smith R. L., Klug M. J. 1981; Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Applied and Environmental Microbiology 41:1230–1237
    [Google Scholar]
  46. Sørensen J., Christensen D., Jørgensen B. B. 1981; Volatile fatty acids and hydrogen as substrates for sulphate-reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology 42:5–11
    [Google Scholar]
  47. Stieb M., Schink B. 1985; Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Archives of Microbiology 140:387–398
    [Google Scholar]
  48. Taylor J., Parkes R. J. 1983; The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. Journal of General Microbiology 129:3303–3309
    [Google Scholar]
  49. Taylor J., Parkes R. J. 1985; Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. Journal of General Microbiology 131:631–642
    [Google Scholar]
  50. Ueki A., Suto T. 1979; Cellular fatty acid composition of sulphate-reducing bacteria. Journal of General and Applied Microbiology 25:185–196
    [Google Scholar]
  51. Volkman J. K., Johns R. B., Gillan F. T., Perry G. J., Bavor H. J. 1980; Microbial lipids of an intertidal sediment. I. Fatty acids and hydrocarbons. Geochimica et cosmochimica acta 44:1133–1143
    [Google Scholar]
  52. White D. C. 1983; Analysis of microorganisms in terms of quantity and activity in natural environments. Symposia of the Society for General Microbiology 34:37–66
    [Google Scholar]
  53. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oceologia 40:51–62
    [Google Scholar]
  54. Widdel F., Pfennig N. 1977; A new anaerobic, sporing, acetate-oxidising sulphate-reducing bacterium Desulfotomaculum (emend) acetoxidans. Archives of Microbiology 112:119–122
    [Google Scholar]
  55. Widdel F., Pfennig N. 1981a; Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. I. Isolation of new sulphate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Archives of Microbiology 129:395–400
    [Google Scholar]
  56. Widdel F., Pfennig N. 1981b; Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Archives of Microbiology 129:401–402
    [Google Scholar]
  57. Winfrey M. R., Zeikus J. G. 1977; Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Applied and Environmental Microbiology 33:275–281
    [Google Scholar]
  58. Wolfe R. S., Pfennig N. 1977; Reduction of sulphur by Spirillum 5175 and syntrophism with Chlorobium. Applied and Environmental Microbiology 33:427–433
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-7-1815
Loading
/content/journal/micro/10.1099/00221287-132-7-1815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error