1887

Abstract

Summary: Glucose exerted a concentration-dependent negative regulation on the biosynthesis of cephamycin C by . Formation of the cephamycin precursor δ(α-aminoadipyl)-cysteinyl-valine was greatly decreased by excess glucose. The ring-expanding enzyme deacetoxycephalosporin C synthase was strongly repressed by glucose . Isopenicillin N synthase (cyclase) and isopenicillin N epimerase were not repressed by glucose. However, the activity of isopenicillin N synthase was inhibited by glucose 6-phosphate, and the activity of deacetoxycephalosporin C synthase was inhibited by inorganic phosphate, glucose 6-phosphate, fructose 2,6-diphosphate and fructose 1,6-diphosphate. The intracellular cAMP content decreased as growth proceeded and remained lower in glucose-supplemented cells than in control cultures. cAMP did not seem to be involved in glucose control of cephamycin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-7-1805
1986-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/7/mic-132-7-1805.html?itemId=/content/journal/micro/10.1099/00221287-132-7-1805&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Demain A. L. 1978; Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 14:159–164
    [Google Scholar]
  2. Behmer C. J., Demain A. L. 1983; Further studies on carbon catabolite regulation of βlactam antibiotic synthesis in Cephalosporium acremonium . Current Microbiology 8:107–114
    [Google Scholar]
  3. Braña A. F., Hu W. S., Demain A. L. 1983; Involvement of aeration in carbon source regulation of cephem antibiotic biosynthesis in Streptomyces clavuligerus . Biotechnology Letters 5:791–794
    [Google Scholar]
  4. Castro J. M., Liras P., Cortés J., Martín J. F. 1985; Regulation of δ(α-aminoadipyl-cysteinyl-valine), isopenicillin N synthetase, isopenicillin N isomerase and deacetoxycephalosporin C synthetase by nitrogen sources in Streptomyces lactamdurans . Applied Microbiology and Biotechnology 21:32–40
    [Google Scholar]
  5. Chatterjee S., Vining L. C. 1981; Catabolite repression in Streptomyces venezuelae. Induction ofβ-galactosidase, chloramphenicol production and intracellular cyclic adenosine 3′-5′-monophosphate concentrations. Canadian Journal of Microbiology 28:311–317
    [Google Scholar]
  6. Cortés J., Liras P., Castro J. M., Romero J., Martín J. F. 1984; Regulation of the biosynthesis of cephamycin by Streptomyces lactamdurans . Biochemical Society Transactions 12:863–864
    [Google Scholar]
  7. Dimarco A. A., Romano A. H. 1985; D-Glucose transport system of Zymomonas mobilis . Applied and Environmental Microbiology 49:151–157
    [Google Scholar]
  8. Fawcett P., Abraham E. P. 1975; δ(α-aminoadipyl)cysteinylvaline synthetase. Methods in Enzymology 43:471–473
    [Google Scholar]
  9. Heim J., Shen J. Q., Wolfe S., Demain A. L. 1984; Regulation of isopenicillin N synthetase and deacetoxycephalosporin C synthetase by carbon sources during the fermentation of Cephalosporium acremonium . Applied Microbiology and Biotechnology 19:232–236
    [Google Scholar]
  10. Hers H. G., Hue L., Van Schaftingen E. 1982; Fructose 2,6-biphosphate. Trends in Biochemical Sciences 7:329–331
    [Google Scholar]
  11. Hollander I. J., Shen Y. Q., Heim J., Demain A. L., Wolfe S. 1984; A pure enzyme catalyzing penicillin biosynthesis. Science 224:610–612
    [Google Scholar]
  12. Horecker B. L., Wood W. A. 1957; D-Glucose-6-phosphate. Methods in Enzymology 3:152–154
    [Google Scholar]
  13. Jensen S. E., Westlake D. W. S., Wolfe S. 1982; Cyclization of δ(L-α-aminoadipyl)-L-cysteinyl-D-valine to penicillin by cell free extracts of Streptmyces clavuligerus . Journal of Antibiotics 35:483–490
    [Google Scholar]
  14. Jensen S. E., Westlake D. W. S., Wolfe S. 1983; Partial purification and characterization of isopenicillin N epimerase activity from Streptomyces clavuligerus . Canadian Journal of Microbiology 29:1526–1531
    [Google Scholar]
  15. Jensen S. E., Westlake D. W. S., Wolfe S. 1985; Deacetoxycephalosporin C synthetase and deace-toxycephalosporin C hydroxylase are two different enzymes in Streptomyces clavuligerus . Journal of Antibiotics 38:263–265
    [Google Scholar]
  16. Leloir L. F., Cardini C. E. 1957; Characterization of phosphorus compounds by acid lability. Methods in Enzymology 3:840–850
    [Google Scholar]
  17. Loder P. B., Abraham E. P. 1971; Isolation and nature of intracellular peptides from a cephalosporin C producing Cephalosporium sp. Biochemical Journal 123:471–476
    [Google Scholar]
  18. LóPez-nieto M. J., Ramos F. R., Luengo J. M., Martín J. F. 1985; Characterization of the biosynthesis in vivo of a-aminoadipyl-cysteinyl-valine in Penicillium chrysogenum . Applied Microbiology and Biotechnology 21:343–351
    [Google Scholar]
  19. Lubbe C., Jensen S. E., Demain A. L. 1984; Prevention of phosphate inhibition of cephalosporin synthetase by ferrous ion. FEMS Microbiology Letters 25:75–79
    [Google Scholar]
  20. Martín J. F., Demain A. L. 1977; Effect of exogenous nucleotides on the candicidin fermentation. Canadian Journal of Microbiology 23:1334–1339
    [Google Scholar]
  21. Martín J. F., Demain A. L. 1980; Control of antibiotic biosynthesis. Microbiological Reviews 44:230–251
    [Google Scholar]
  22. Martín J. F., Liras P. 1985; Biosynthesis of β-lactam antibiotics: design and construction of overproducing strains. Trends in Biotechnology 3:39–44
    [Google Scholar]
  23. Martín J. F., Liras P., Demain A. L. 1978; ATP and adenylate energy charge during phosphatemediated control of antibiotic synthesis. Biochemical and Biophysical Research Communications 83:822–828
    [Google Scholar]
  24. Martín J. F., Revilla G., Zanca D. M., LóPez-nieto M. J. 1982; Carbon catabolite regulation of penicillin and cephalosporin biosynthesis. In Trends in Antibiotic Research pp 258–268 Edited by Umezawa H., Demain A. L., Hata T., Hutchinson C. R. Tokyo: Japan Antibiotics Research Association;
    [Google Scholar]
  25. Pang C. P., Chakravarti B., Adlington R. M., Ting H. H., White R. L., Jayatilake G. S., Baldwin J. E., Abraham E. P. 1984; Purification of isopenicillin N synthetase. Biochemical Journal 222:789–795
    [Google Scholar]
  26. Perlman R. L., De Combruggle B., Pastan I. 1969; Cyclic-AMP regulates catabolite and transient repression in E. coli . Nature, London 223:810–812
    [Google Scholar]
  27. Ragan C. M., Vining L. C. 1978; Intracellular cyclic adenosine 3′,5′-monophosphate levels and streptomycin production in cultures of Streptomyces griseus . Canadian Journal of Microbiology 24:1012–1015
    [Google Scholar]
  28. Ramos F. R., Lopez-nieto M. J., Martín J. F. 1985; Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts μ(L-α-amino-adipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrobial Agents and Chemotherapy 21:380–387
    [Google Scholar]
  29. Revilla G., Lopez-Nieto M. J., Luengo J. M., Martín J. F. 1984; Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum . Journal of Antibiotics 37:781–789
    [Google Scholar]
  30. Romero J., Liras P., Martín J. F. 1984; Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus . Applied Microbiology and Biotechnology 20:318–325
    [Google Scholar]
  31. Vadeboncoeur C., Trahan L. 1982; Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenol-pyruvate : glucose phosphotransferase system which catalyses the phosphorylation of α-methylglucoside. Canadian Journal of Microbiology 28:190–199
    [Google Scholar]
  32. Zanca D. M., Martín J. F. 1983; Carbon catabolite regulation of the conversion of penicillin into cephalosporin C. Journal of Antibiotics 36:700–708
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-7-1805
Loading
/content/journal/micro/10.1099/00221287-132-7-1805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error