1887

Abstract

SUMMARY: The localization of ATP-hydrolysing activity in vegetative cells, spores and isolated membranes of 168 was studied by a cytochemical method combined with electron microscopy. The activity was located mainly in the cytoplasmic membrane and the mesosomes, and was also found in the inner layer of the cell wall facing the cytoplasmic membrane. Activity was also detected in the cross-membranes of dividing cells and in spore coats. The product of the reaction was observed either as fine electron-dense granules incorporated into the membranes, or as high-contrast lead precipitates on the surfaces of the membranes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-3-669
1986-03-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/3/mic-132-3-669.html?itemId=/content/journal/micro/10.1099/00221287-132-3-669&mimeType=html&fmt=ahah

References

  1. Cherepova N. V., Baikousheva S. P., Ilieva K. Z. 1984; Electron-microscopic demonstration of the localization of adenosine triphosphatase in Bacillus subtilis. Comptes rendus de l’Academie bulgare des Sciences 37:641–643
    [Google Scholar]
  2. Downie J. A., Gibson F., Cox G. B. 1979; Membrane adenosine triphosphatases of prokaryotic cells. Annual Review of Biochemistry 48:103–131
    [Google Scholar]
  3. Futai M., Kanazawa H. 1983; Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiological Reviews 47:285–312
    [Google Scholar]
  4. Goldfischer S., Essner E., Novikoff A. B. 1964; The localization of phosphatase activities at the level of ultrastructure. Journal of Histochemistry and Cytochemistry 12:72–95
    [Google Scholar]
  5. Kellenberger E., Ryter A., Sechaud J. 1958; Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. Journal of Biophysical and Biochemical Cytology 4:671–676
    [Google Scholar]
  6. Konings W. N., Bischop A., Veenhuis M., Vermeulen C. A. 1973; New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure. Journal of Bacteriology 116:1456–1465
    [Google Scholar]
  7. Kubak B. M., Jotis W. W. 1981; Staphylococcus aureus adenosine triphosphatase: inhibitor sensitivity and release from membrane. Journal of Bacteriology 146:385–390
    [Google Scholar]
  8. Kushnarev V. M., Bykov A. S., Smirnova T. A., Tjurin V. S. 1968; An electron microscopy study of adenosine triphosphatase activity of Staphylococcus aureus. Mikrobiologiya 31:100–102
    [Google Scholar]
  9. Mikhaleva N. I., Gutevskaya S. A., Nesmeyanova M. A., Suzina N. E., Fikhte B. A. 1984; The effect of various cell disintegration procedures on the orientation of membranous vesicles in Escherichia coli. Mikrobiologiya 53:432–436
    [Google Scholar]
  10. Monteil H., Serrahima-Zieger M. 1978; Les ATPases bacteriennes: proprietes moleculaires et fonctions. Bulletin de l'Institut Pasteur 76:207–246
    [Google Scholar]
  11. Munoz H. 1982; Polymorphism and conformational dynamics of F1 -ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity. Biochimica et biophysica acta 650:233–265
    [Google Scholar]
  12. Oppenheim J. D., Salton M. R. J. 1973; Localization and distribution of Micrococcus lyso-deikticus membrane ATPase determined by ferritin labeling. Biochimica et biophysica acta 298:297–322
    [Google Scholar]
  13. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17:208–212
    [Google Scholar]
  14. Sabatini D. D., Bensch K., Barnett R. J. 1963; Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. Journal of Cell Biology 17:19–58
    [Google Scholar]
  15. Salton M. R. J. 1974; Membrane-associated enzymes in bacteria. Advances in Microbial Physiology 11:213–282
    [Google Scholar]
  16. Salton M. R. J. 1976; Methods of isolation and characterization of bacterial membranes. Edited by E. D. Korn. New York: Plenum Publishing Corp. In Methods in Membrane Biology vol. 6, pp.:101–150
    [Google Scholar]
  17. Schneider E., Altendorf K. 1984; The proton-translocating portion (F0) of the Escherichia coli ATP synthase. Trends in Biochemical Sciences 9:51–52
    [Google Scholar]
  18. Senior A. E., Wise J. G. 1983; The proton-ATPase of bacteria and mitochondria. Journal of Membrane Biology 73:105–124
    [Google Scholar]
  19. Serrahima-Zieger M., Monteil H. 1978; Membrane ATPase of Bacillus subtilis. I. Purification and properties. Biochimica et biophysica acta 502:445–457
    [Google Scholar]
  20. Serrahima-Zieger M., Monteil H. 1982; Isolation and purification of dicyclohexylcarbodiimide-reactive proteolipid from Bacillus subtilis membrane. Biochimica et biophysica acta 679:369–375
    [Google Scholar]
  21. Sigler K. 1982; ATPases: common and unique features within a group of enzymes. Folia microbio-logica 27:195–210
    [Google Scholar]
  22. Voelz H. 1982; Sites of adenosine triphosphatase activity in bacteria. Journal of Bacteriology 88:1196–1198
    [Google Scholar]
  23. Wachstein M., Besen B. 1963; Electron microscopic localization of phosphatase activity in the brush border of the rat kidney. Journal of Histochemistry and Cytochemistry 11:447–448
    [Google Scholar]
  24. Wetzel B. K., Spicer S. S., Dvorak H. F., Heppel J. A. 1970; Cytochemical localization of certain phosphatases in Escherichia coli. Journal of Bacteriology 104:529–542
    [Google Scholar]
/content/journal/micro/10.1099/00221287-132-3-669
Loading
/content/journal/micro/10.1099/00221287-132-3-669
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error