1887

Abstract

Summary: Among secreted proteins of 168 four polypeptides, separated by electrophoresis in polyacrylamide gradient gels under denaturing conditions, were shown to have lichenanhydrolysing enzyme activity; one of them, a 22 kDa protein, represents the main β-glucanase activity. A number of -methyl--nitro--nitrosoguanidine-induced mutants defective in β-glucanase activity at an elevated temperature (44°C) were isolated and characterized. All mutants analysed by PAGE had no active 22 kDa β-glucanase in their supernatants and showed no cross-reactivity with antibodies raised against purified 22 kDa β-glucanase. However, formation of other exoenzymes, including the other minor β-glucanases, was not affected in these mutant strains. The mutations () were mapped by phage PBS1-mediated transduction and found to be located between and , close to the marker of the chromosome. A 3.8 kb RI fragment of the chromosome which directs β-glucanase synthesis in as well as complementing a β-glucanase deficient mutant, , of to synthesize active 22 kDa β-glucanase was mapped after homologous recombination by means of an integratable plasmid. The cointegrated chloramphenicol-resistance marker of the plasmid was found at the same map position as the mutations and , suggesting that the gene affected encodes for the 22 kDa β-glucanase and lies within the order

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-2-431
1986-02-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/2/mic-132-2-431.html?itemId=/content/journal/micro/10.1099/00221287-132-2-431&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. Journal of Bacteriology 81:741–746
    [Google Scholar]
  2. Anderson M. A., Stone B. A. 1975; A new substrate for investigating the specificity of β-glucan hydrolases. FEBS Letters 52:202–207
    [Google Scholar]
  3. Balassa G. 1969; Biochemical genetics of bacterial sporulation. 1. Unidirectional pleiotropic interactions among genes controlling sporulation in Bacillus subtilis. Molecular and General Genetics 104:73–103
    [Google Scholar]
  4. Blattner E. R., Williams B. G., Blechl A. E., Thompson K. D., Faber H. E., Furlong L. A., Grunwald D. J., Kiefer D. O., Moore D. D., Schumm J. W., Sheldon L, Smithies O. 1977; Charon phage: safer derivatives of bacteriophage lambda for DNA cloning. Science 196:161–169
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W. 1969; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  6. Borriss R. 1976; β-1 ,3-1 ,CGlucanase in sporenbildenden Mikroorganismen. I. β-Glucanasebildung wahrend des Verlaufs des Wachstumszyklus von Bacillus subtilis (Marburg Yale). Zeitschrift fur allgemeine Mikrobiologie 16:475–477
    [Google Scholar]
  7. Borriss R. 1981; Purification and characterization of an extracellular β-glucanase from Bacillus I MET B376. Zeitschrift fur allgemeine Mikrobiologie 21:7–17
    [Google Scholar]
  8. Borriss R., Schroeder K.-L. 1981; β-3-1,4-Glucanase in spore forming microorganisms. V. The efficiency of β-glucanase in reducing the viscosity of wort. Zentralblatt fur Bakteriologie und Parasitenkunde (Abteilung II) 136:330–340
    [Google Scholar]
  9. Borriss R., Zemek J. 1980; β-3-1,4-Glucanase in spore forming microorganisms. III. Substrate specificity and action patterns of some Bacillus β-glucan hydrolases. Zentralblatt fur Bakteriologie und Parasitenkunde (Abteilung II ) 135:696–703
    [Google Scholar]
  10. Borriss R., Zemek J. 1980; β-3-1,4-Glucanase in spore forming microorganisms. IV. Properties of some Bacillus β-glucan hydrolases. Zentralblatt fur Bakteriologie und Parasitenkunde (Abteilung II ) 136:63–69
    [Google Scholar]
  11. Borriss R., Zemek J., Augustin J., Pacova Z., Kuniak L. 1980; β-3-1,4-Glucanase in spore forming microorganisms. II. Production of β-glucan hydrolases by various Bacillus species. Zentralblatt fur Bakteriologie und Parasitenkunde (Abteilung II ) 135:435–442
    [Google Scholar]
  12. Borriss R., Noack D., Geuther R. 1982; β-3-1,4-Glucanase in spore forming microorganisms. VI. Genetic instability of β-glucanase production in a high producer strain of Bacillus amyloliquejhciens grown in a chemostat. Zentralblatt fur allgemeine Mikrobiologie 22:293–298
    [Google Scholar]
  13. Borriss R., Baumlein H., Hofemeister J. 1985; Expression in Escherichia coli of a cloned β-glucanase gene from Bacillus amyloliquefaciens. Applied Microbiology and Biotechnology 22:63–71
    [Google Scholar]
  14. Bott K. F., Wilson G. A. 1967; Development of competence in the Bacillus subtilis transformation system. Journal of Bacteriology 94:562–570
    [Google Scholar]
  15. Bott K. F., Wilson G. A. 1968; Metabolic and nutritional factors influencing the development of competence for transfection of Bacillus subtilis. Bacteriological Reviews 32:370–378
    [Google Scholar]
  16. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  17. Brehm S. P., Staal S. P., Hoch J. A. 1973; Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis. . Journal of Bacteriology 115:1063–1070
    [Google Scholar]
  18. Cantwell B. A., McConnell D. J. 1983; Molecular cloning and expression of a Bacillus subtilis β-glucanase gene in Escherichia coli. . Gene 23:211–219
    [Google Scholar]
  19. Chang S., Cohen N. 1979; High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular and General Genetics 168:111–115
    [Google Scholar]
  20. Chasin L. A., Magasanik B. 1968; Induction and repression of the histidine degrading enzymes of Bacillus subtilis. Journal of Biological Chemistry 243:5156–5178
    [Google Scholar]
  21. Dedonder R. A., Lepesant I. A., Lepesant-Kejzlarova J., Billault A., Steinmetz M., Kunst F. 1977; Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. . Applied and Environmental Microbiology 33:989–993
    [Google Scholar]
  22. Dubnau D., Davidoff-Abelson R. 1971; Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. . Journal of Molecular Biology 56:209–221
    [Google Scholar]
  23. Fucik V., Grunnerova H., Zadrazil S. 1982; Restriction and modification in Bacillus subtilis 168. Regulation of hsrM (nonB) expression in spo0A. mutants and effects on permissiveness for ϕ15 and ϕ105 phages. Molecular and General Genetics 186:118–121
    [Google Scholar]
  24. Gryczan T. J., Contente S., Dubnau D. 1978; Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. Journal of Bacteriology 134:318–329
    [Google Scholar]
  25. Haldenwang W. G., Banner C. D. B., Ollington R., Losick R., Hoch J. A., O’Connor M. B., Sonenshein A. L. 1980; Mapping a cloned gene under sporulation control by insertion of a drug resistance marker into the Bacillus subtilis chromosome. Journal of Bacteriology 142:90–98
    [Google Scholar]
  26. Henner J. J., Hoch J. A. 1980; The Bacillus chromosome. Bacteriological Reviews 44:57–62
    [Google Scholar]
  27. Kushner S. R., Hoch J. A. 1980; An improved method for transformation of Escherichia coli with ColEl-derived plasmids. Edited by H. B. Boyer & S. Nicosia. Amsterdam: Elsevier/North-Holland. In Genetic Engineering pp:17–23
    [Google Scholar]
  28. Langner J., Wakil A., Zimmermann H., Ansorge S., Bohley P., Kirschke H., Wiederanders B. 1973; Aktivitatsbestimmung proteolytischer Enzyme mit Azokasein als Substrat. Acta biologica et medica germanica 31:1–18
    [Google Scholar]
  29. Love E., D'Ambrosio J. D., Brown N. C., Dubnau D. 1976; Mapping of the gene specifying DNA polymerase III of Bacillus subtilis. Molecular and General Genetics 141:313–321
    [Google Scholar]
  30. Michel B., Niaudet B., Ehrlich S. D. 1983; Intermolecular recombination during transformation of Bacillus subtilis competent cells by monomeric and chimeric plasmids. Plasmid 10:1–10
    [Google Scholar]
  31. Moscatelli E. A., Ham E. A., Rickes E. L. 1961; Enzymatic properties of a glucanase from Bacillus subtilis. Journal of Biological Chemistry 236:2858–2862
    [Google Scholar]
  32. Primrose S. B., Ehrlich S. D. 1981; Instability associated with deletion formation in a hybrid plasmid. Plasmid 6:193–201
    [Google Scholar]
  33. Southern E. M. 1979; Gel electrophoresis of restriction fragments. Methods in Enzymology 68:152–176
    [Google Scholar]
  34. Suss K. H., Schmidt O. 1982; Evidence for an α3. β3 γ, 𝛿, I, II, 𝜀, III5 subunit stoichiometry of chloroplast ATP synthetase complex (CF1-CF0). FEBS Letters 144:213–218
    [Google Scholar]
  35. Suzuki H., Kaneko T. 1976; Degradation of barley glucan and lichenan by a Bacillus pumilus enzyme. Agricultural and Biological Chemistry 40:577–586
    [Google Scholar]
  36. Takahashi J. 1963; Transducing phages for Bacillus subtilis. . Journal of General Microbiology 31:211–217
    [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 76:4350–4354
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-2-431
Loading
/content/journal/micro/10.1099/00221287-132-2-431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error