1887

Abstract

Summary: The locus , involved in the sporulation of , was cloned into derivatives of the temperate phage 105. Two recombinant phages were obtained which contain chromosomal DNA covering 1∙6 kbp. They are both able to complement mutations and . These mutations, which were believed to be in different loci, and respectively, were shown to be closely linked, and both map at the position assigned to on the genetic map of The sequence of 1656 bp carrying the locus was determined. Only one open reading frame was found; this codes for a protein of 343 amino acids. It is preceded by a ribosome binding site and possible recognition sequences for σ- and σ-RNA polymerases. Studies of the locus by means of integrational plasmid vectors defined the outer limits of the transcriptional unit. These results are completely compatible with the sequence data. The combination of sequence and mapping and the information obtained by the use of integrational plasmids confirm that the locus functions as a monocistronic operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-2-341
1986-02-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/2/mic-132-2-341.html?itemId=/content/journal/micro/10.1099/00221287-132-2-341&mimeType=html&fmt=ahah

References

  1. Anaguchi H., Fukui S., Shimotsu H., Kawamura F., Saito H., Kobayashi Y. 1984; Cloning of sporulation gene spoIIC in Bacillus subtilis. Journal of General Microbiology 130:757–760
    [Google Scholar]
  2. Ayaki H., Kobayashi Y. 1984; Cloning of sporulation gene spoIIG in Bacillus subtilis. Journal of Bacteriology 158:507–512
    [Google Scholar]
  3. Band L., Henner D. J. 1984; Bacillus subtilis requires a ‘stringent’ Shine–Dalgarno region for gene expression. DNA 3:17–21
    [Google Scholar]
  4. Birdsell D. C., Hathaway G. M., Rutberg L. 1969; Characterization of temperate Bacillus bacteriophage ϕ105. Journal of Virology 4:264–270
    [Google Scholar]
  5. Bugaichuk U. D., Deadman M., Errington J., Savva D. 1984; Restriction enzyme analysis of Bacillus subtilis bacteriophage ϕ105 DNA. Journal of General Microbiology 130:2165–2167
    [Google Scholar]
  6. Coote J. G. 1972; Sporulation in Bacillus subtilis. Genetic analysis of oligosporogenous mutants. Journal of General Microbiology 71:17–27
    [Google Scholar]
  7. Dancer B. N., Mandelstam J. 1975; Production and possible function of serine protease during sporulation of Bacillus subtilis. Journal of Bacteriology 121:406–410
    [Google Scholar]
  8. Errington J. 1984; Efficient Bacillus subtilis cloning system using bacteriophage vector ϕ 105J9. Journal of General Microbiology 130:2615–2628
    [Google Scholar]
  9. Errington J., Fort P., Mandelstam J. 1985; Duplicated sporulation genes in bacteria: implications for simple developmental systems. FEBS Letters 188:184–188
    [Google Scholar]
  10. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis. Journal of Bacteriology 154:1513–1515
    [Google Scholar]
  11. Flock J.-I. 1977; Deletion mutants of temperate Bacillus subtilis bacteriophage ϕ105. Molecular and General Genetics 155:241–247
    [Google Scholar]
  12. Fort P., Errington J. 1985; Nucleotide sequence and complementation analysis of a polycistronic spoliation operon, spoVA, in Bacillus subtilis. Journal of General Microbiology 131:1091–1105
    [Google Scholar]
  13. Fort P., Piggot P. J. 1984; Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. Journal of Microbiology 130:2147–2153
    [Google Scholar]
  14. Glenn A. R., Mandelstam J. 1971; Sporulation in Bacillus subtilis 168. Comparison of alkaline phosphatase from sporulating and vegetative cells. Biochemical Journal 123:129–138
    [Google Scholar]
  15. Guo L.-H., Yang R. C. A., Wu R. 1983; An improved strategy for rapid direct sequencing of both strands of long DNA molecules cloned in a plasmid. Nucleic Acids Research 11:5521–5540
    [Google Scholar]
  16. Haldenwang W. G., Banner C. D., Ollington J. F., Losick R., Hoch J. A., O’Connor M. B., Sonenshein A. L. 1980; Mapping a cloned gene under sporulation control by insertion of a drug resistance marker into the Bacillus subtilis chromosome. Journal of Bacteriology 142:90–98
    [Google Scholar]
  17. Henner D. J., Hoch J. A. 1980; The Bacillus subtilis chromosome. Microbiological Reviews 44:57–82
    [Google Scholar]
  18. Hoch J. A. 1971; Selection of cells transformed to prototrophy for sporulation markers. Journal of Bacteriology 105:1200–1201
    [Google Scholar]
  19. James W. S., Mandelstam J. 1985; Protease production during sporulation of germination mutants of Bacillus subtilis and the cloning of a functional gerE gene. Journal of General Microbiology 131:2421–2430
    [Google Scholar]
  20. Jenkinson H. F. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. Journal of General Microbiology 129:1945–1958
    [Google Scholar]
  21. Jenkinson H. F., Mandelstam J. 1983; Cloning of the Bacillus subtilis lys and spoIIIB genes in phage ϕ105. Journal of General Microbiology 129:2229–2240
    [Google Scholar]
  22. Johnson W. C., Moran C. P., Jr, Losick R. 1983; Two RNA polymerase sigma factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene. Nature, London 302:800–804
    [Google Scholar]
  23. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of Bacillus subtilis defective in DNA synthesis. Molecular and General Genetics 108:277–287
    [Google Scholar]
  24. Kawamura F., Saito H., Ikeda Y. 1979; A novel method for construction of specialized transducing phage p11 of Bacillus subtilis. Gene 5:87–91
    [Google Scholar]
  25. Kawamura F., Shimotsu H., Saito H., Hirochika H., Kobayashi Y. 1981; Cloning of spo0 genes with bacteriophage and plasmid vectors in Bacillus subtilis. In Sporulation and Germination, pp. 109–113 Edited by H. S. Levinson, A. L. Sonenshein & D. J. Tipper. Washington, DC: American Society for Microbiology.
    [Google Scholar]
  26. Kay D., Warren S. C. 1968; Sporulation in Bacillus subtilis. Morphological changes. Biochemical Journal 109:819–824
    [Google Scholar]
  27. Losick R. 1982; Sporulation genes and their regulation. In The Molecular Biology of the Bacilli, vol. 1, pp. 179–201 Edited by D. A. Dubnau. New York & London: Academic Press.
    [Google Scholar]
  28. Losick R., Pero J. 1981; Cascades of sigma factors. Cell 25:582–584
    [Google Scholar]
  29. McLaughlin J. R., Murray C. L., Rabinowitz J. C. 1981; Unique features in the ribosome binding site sequence of the Gram-positive Staphylococcus aureus β-lactamase gene. Journal of Biological Chemistry 256:11283–11291
    [Google Scholar]
  30. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  31. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  32. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  33. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Reseach 9:309–321
    [Google Scholar]
  34. Moran C. P., Jr, Lang N., Le Grice S. F. J., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Molecular and Genral Genetics 186:339–346
    [Google Scholar]
  35. Perlman D., Halvorson H. O. 1983; A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  36. Piggot P. J. 1973; Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporulation operons. Journal of Bacteriology 114:1241–1253
    [Google Scholar]
  37. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriological Reviews 40:908–962
    [Google Scholar]
  38. Piggot P. J., Moir A., Smith D. A. 1981; Advances in the genetics of Bacillus subtilis differentiation. In Sporulation and Germination, pp. 29–39 Edited by H. S. Levinson, A. L. Sonenshein & D. J. Tipper. Washington, DC: American Society for Microbiology.
    [Google Scholar]
  39. Piggot P. J., Curtis C. A. M., Lencastre H. de. 1984; Demonstration of a polycistronic transcriptional unit required for sporulation of Bacillus subtilis by use of integrational plasmid vectors. Journal of General Microbiology 130:2123–2136
    [Google Scholar]
  40. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annual Review of Genetics 13:319–353
    [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  42. Savva D., Mandelstam J. 1984; Cloning of the Bacillus subtilis spoII A and spoVA loci in phage ϕ105DI:1t. Journal of General Microbiology 130:2137–2145
    [Google Scholar]
  43. Schaeffer P., Ionesco H., Ryter A., Balassa G. 1985; La sporulation de Bacillus subtilis: étude génétique et physiologique. Colloques internationaux du Centre national de la recherche scientifique 124:553–563
    [Google Scholar]
  44. Shine J., Dalgarno L. 1974; The 3ʹ terminal sequence of Escherichia coii 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 71:1342–1346
    [Google Scholar]
  45. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  46. Sterlini J. M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to the development of actinomycin resistance. Biochemical Journal 113:29–37
    [Google Scholar]
  47. Stragier P., Bouvier J., Bonamy C., Szulmajster J. 1984; A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. Nature, London 312:376–378
    [Google Scholar]
  48. Takahashi I. 1961; Genetic transduction in Bacillus subtilis. Biochemical and Biophysical Research Communications 5:171–175
    [Google Scholar]
  49. Tinoco I., Borer P., Tinoco I., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  50. Vasantha N., Thompson L. D., Rhodes C., Banner C., Nagle J., Filpula D. 1984; Genes for alkaline protease and natural protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequences and mature proteins. Journal of Bacteriology 159:811–819
    [Google Scholar]
  51. Waites W. M., Kay D., Dawes I. W., Wood D. A., Warren S. C., Mandelstam J. 1970; Sporulation in Bacillus subtilis: correlation of biochemical events with morphological changes in asporogenous mutants. Biochemical Journal 118:667–676
    [Google Scholar]
  52. Ward J. B., Jr, Zahler S. A. 1973; Genetic studies of leucine biosynthesis in Bacillus subtilis. Journal of Bacteriology 116:719–726
    [Google Scholar]
  53. Young M., Mandelstam J. 1979; Early events during bacterial endospore formation. Advances in Microbial Physiology 20:103–162
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-2-341
Loading
/content/journal/micro/10.1099/00221287-132-2-341
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error