The Effect of Hydrogen on the Growth of (Hildenborough) on Lactate Free

Abstract

Summary: (Hildenborough) was grown on lactate with either a N/CO or a H/CO gas phase. H increased the growth yield on lactate and had a sparing effect on lactate utilization, without altering the growth rate or hydrogenase level. Growth on acetate plus CO with H as sole energy source did not require an extensive adaptation period. Addition of lactate to cultures growing on acetate and H/CO resulted in a switch from acetate to lactate utilization. In lactate-limited medium under H/CO biphasic growth was observed. Lactate was oxidized first with production of acetate, followed by a second phase of growth on the acetate. Under this condition H did not provide any supplementary energy during growth on lactate, as was evident from the ratio of lactate utilized to acetate produced.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-12-3349
1986-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/12/mic-132-12-3349.html?itemId=/content/journal/micro/10.1099/00221287-132-12-3349&mimeType=html&fmt=ahah

References

  1. Badziong W., Thauer R. K., Zfikus J. G. 1978; Isolation and characterization of Desulfovibrio grow-ing on hydrogen plus sulphate as the sole energy source. Archives of Microbiology 116:41–49
    [Google Scholar]
  2. Brandis A., Thauer R. K. 1981; Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. Journal of General Microbiology 126:249–252
    [Google Scholar]
  3. Christensen D. 1984; Determination of substrate oxidised by sulphate reduction in intact cores of marine sediments. Limnology and Oceanography 29:189–192
    [Google Scholar]
  4. Cypionka H., Pfennig N. 1986; Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Archives of Microbiology 143:396–399
    [Google Scholar]
  5. Gow L. A., Pankhania I. P., Ballantine S. P., Boxer D. H., Hamilton W. A. 1986; Identifica-tion of a membrane-bound hydrogenase of Desulfo-vibrio vulgaris (Hildenborough). Biochimica et biophysica acta 851:57–66
    [Google Scholar]
  6. Hamilton W. A. 1982; Lactate dehydrogenase in Desulfovibrio vulgaris . In Physiology, Ecology and Taxonomy of Sulphate-reducing BacteriaProceedings of FEMS SymposiumFreiburg, FRG
    [Google Scholar]
  7. Hamilton W. A. 1985; Sulphate-reducing bacteria and anaerobic corrosion. Annual Review of Micro-biology 39:1952–217
    [Google Scholar]
  8. Hatchikian E. C., Chaigneau M., LeGall J. 1976; Analysis of gas production by growing cultures of three species of sulphate-reducing bacte-ria. In Microbial Production and Utilization of Gases pp 109–118 Edited by Schlegel H. G., Gottschalk G., Pfennig N. Gottingen: Erich Goltze;
    [Google Scholar]
  9. Jorgensen B. B. 1982; Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philosophical Transactions of the Royal Society B298:543–561
    [Google Scholar]
  10. Khosrovi B., Miller J. D. A. 1975; A comparison of the growth of Desulfovibrio vulgaris under a hydrogen and under an inert atmosphere. Plant and Soil 43:171–187
    [Google Scholar]
  11. Khosrovi B., Macpherson R., Miller J. D. A. 1971; Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris . Archives of Micro-biology 80:324–337
    [Google Scholar]
  12. Klemps R., Cypionka H., Widdel F., Pfennig N. 1985; Growth with hydrogen, and further physio-logical characteristics of Desulfotomaculum species. Archives of Microbiology 143:203–208
    [Google Scholar]
  13. Lewis A. J., Miller J. D. A. 1977; The tricar-boxylic acid pathway in Desulfovibrio . Canadian Journal of Microbiology 23:916–921
    [Google Scholar]
  14. Lupton F. S., Conrad R., Zeikus J. G. 1984; Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. Journal of Bacteriology 159:843–849
    [Google Scholar]
  15. Nethe-Jaenchen R., Thauer R. K. 1984; Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Archives of Microbi-ology 137:236–240
    [Google Scholar]
  16. Odom J. M., Peck H. D. Jr 1981; Hydrogen cycling as a general mechanism for energy coupling in the sulphate-reducing bacterium, Desulfovibrio sp. FEMS Microbiology Letters 12:47–50
    [Google Scholar]
  17. Odom J. M., Peck H. D. Jr 1984; Hydrogenase, electron-transfer proteins, and energy coupling in the sulphate-reducing bacterium Desulfovibrio . Annual Review of Microbiology 38:551–592
    [Google Scholar]
  18. Pankhania I. P., Gow L. A., Hamilton W. A. 1986a; Extraction of periplasmic hydrogenase from Desulfovibrio vulgaris (Hildenborough). FEMS Microbiology Letters 35:1–4
    [Google Scholar]
  19. Pankhania I. P., Moosavi A. N., Hamilton W. A. 1986b; Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough). Journal of General Microbiology 132:3357–3365
    [Google Scholar]
  20. Peck H. D., Jr LeGall J. 1982; Biochemistry of dissimilatory sulphate reduction. Philosophical Transactions of the Royal Society B298:443–466
    [Google Scholar]
  21. Pfennig N., Widdel F. 1982; The bacteria of the sulphur cycle. Philosophical Transactions of the Royal Society B298:433–441
    [Google Scholar]
  22. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulphate-reducing bacteria. In The Prokaryotes vol 1 pp 926–940 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin Heidelberg: Springer-Verlag;
    [Google Scholar]
  23. Postgate J. R. 1984 The Sulphate-reducing Bacteria, 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  24. Sørensen J., Christensen D., Jørgensen B. B. 1981; Volatile fatty acids and hydrogen as sub¬strates for sulphate-reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology 42:5–11
    [Google Scholar]
  25. Taras M. J., Greenburg A. E., Hoak R. D., Rand M. C. 1971 Sulfate. In Standard Methods for the Examination of Water and Wastewater, 13th edn. pp 330–336 Washington, DC: American Public Health Association;
    [Google Scholar]
  26. Thauer R. K., Morris J. G. 1984; Metabolism of chemotropic anaerobes: old views and new aspects. Symposia of the Society for General Microbiology 36: (pt II) 123–168
    [Google Scholar]
  27. Traore A. S., Hatchikian C. E., Belaich J. -P., LeGall J. 1981; Microcalorimetric studies of the growth of sulphate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. Journal of Bacteriology 145:191–192
    [Google Scholar]
  28. Tsuji K., Yagi T. 1980; Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris Miyazaki and the role of hydrogenase and cytochrome c 3 in energy production system. Archives of Microbiology 125:35–42
    [Google Scholar]
  29. Widdel F. 1980 Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzier-ender Bakterien PhD thesis University of Göttingen;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-12-3349
Loading
/content/journal/micro/10.1099/00221287-132-12-3349
Loading

Data & Media loading...

Most cited Most Cited RSS feed