1887

Abstract

Summary: A transcript analysis of the citrate synthase and succinate dehydrogenase genes () of was done by nuclease S1 mapping. Evidence was obtained for two monocistronic transcripts extending anti-clockwise, to a common terminus, from independent promoters with start points 196 bp (major) and 299 bp (minor) upstream of the coding region. Evidence was also obtained for two polycistronic transcripts, (minor) and (major), extending clockwise, from sites 219 bp upstream of and 1455 bp upstream of (i.e. within ), to a common terminus. The synthesis of all of the transcripts was repressed by growth in the presence of glucose, and this is consistent with the well-established fact that both enzymes are subject to catabolite repression. Sequences resembling known binding sites for the cAMP-CRP (cyclicAMP-cyclicAMP receptor protein) complex occur in the vicinity of each promoter suggesting that they are activated by the cAMP-CRP complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-12-3239
1986-12-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/12/mic-132-12-3239.html?itemId=/content/journal/micro/10.1099/00221287-132-12-3239&mimeType=html&fmt=ahah

References

  1. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences of the United States of America 80:3963–3965
    [Google Scholar]
  2. Bloxham D. P., Herbert C. J., Ner S. S., Drabble W. T. 1983; Citrate synthase activity in Escherichia coli harbouring hybrid plasmids containing the git A gene. Journal of General Microbiology 129:1889–1897
    [Google Scholar]
  3. Buck D., Spencer M. E., Guest J. R. 1985; Primary structure of the succinyl-CoA synthetase of Escherichia coli . Biochemistry 24:6245–6252
    [Google Scholar]
  4. Buck D., Spencer M. E., Guest J. R. 1986; Cloning and expression of the succinyl-CoA synthetase genes of Escherichia coli K12. Journal of General Microbiology 132:1753–1762
    [Google Scholar]
  5. Busby S. J. W. 1986; Positive regulation in gene expression. Symposia of the Society of General Microbiology 39:51–77
    [Google Scholar]
  6. Chapon C., Kolb A. 1983; Action of CAP on the malT promoter in vitro . Journal of Bacteriology 156:1135–1143
    [Google Scholar]
  7. Cole S. T., Condon C., Lemire B. D., Weiner J. H. 1985; Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli . Biochemica et biophysica acta 811:381–403
    [Google Scholar]
  8. Condon C., Cammack R., Patil D. S., Owen P. 1985; The succinate dehydrogenase of Escherichia coli. Immunochemical resolution and biophysical characterization of a 4-subunit enzyme complex. Journal of Biological Chemistry 260:9427–9434
    [Google Scholar]
  9. Darlison M. G., Guest J. R. 1984; Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli . Biochemical Journal 223:507–517
    [Google Scholar]
  10. Darlison M. G., Spencer M. E., Guest J. R. 1984; Nucleotide sequence of the sue A gene encoding the 2-oxoglutarate dehydrogenase of Escherichia coli K12. European Journal of Biochemistry 141:351–359
    [Google Scholar]
  11. Gray C. T., Wimpenny J. W. T., Mossman M. R. 1966; Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli . Biochimica et biophysica acta 117:33–41
    [Google Scholar]
  12. Grossman A. D., Erickson J. W., Gross C. A. 1984; The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390
    [Google Scholar]
  13. Guest J. R. 1981; Hybrid plasmids containing the citrate synthase gene (gltA) of Escherichia coli K12. Journal of General Microbiology 124:17–23
    [Google Scholar]
  14. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Research 11:2237–2255
    [Google Scholar]
  15. Hederstedt L., Rutberg L. 1981; Succinate dehydrogenase - a comparative review. Microbial Reviews 45:542–555
    [Google Scholar]
  16. Higgins C. F., Smith N. H. 1986; Messenger RNA processing, degradation and the control of gene expression. Symposia of the Society for General Microbiology 39:179–198
    [Google Scholar]
  17. Hirschman J., Wong P.-K., Sei K., Keener J., Kustu S. 1985; Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a σ factor. Proceedings of the National Academy of Sciences of the United States of America 82:7525–7529
    [Google Scholar]
  18. Hong G. F. 1981; A method for sequencing singlestranded cloned DNA in both directions. Bioscience Reports 1:243–252
    [Google Scholar]
  19. Hull E. P., Spencer M. E., Wood D., Guest J. R. 1983; Nucleotide sequence of the promoter region of the citrate synthase gene (gltA) of Escherichia coli . FEBS Utters 156:366–370
    [Google Scholar]
  20. Lau L. F., Roberts J. W., Wu R., Georges F., Narang S. A. 1984; A potential stem loop structure and the sequence CAAUCAA in the transcript are insufficient to signal p-dependent transcription termination λtRl. Nucleic Acids Research 12:1287–1299
    [Google Scholar]
  21. Miles J. S., Guest J. R. 1984; Complete nucleotide sequence of the fumarase gene (citG), of Bacillus subtilis 168 . Nucleic Acids Research 12:3631–3642
    [Google Scholar]
  22. Miles J. S., Guest J. R. 1985; Complete nucleotide sequence of the fumarase gene (citG) of Bacillus subtilis 168. Nucleic Acids Research 13:131–140
    [Google Scholar]
  23. Murakami H., Kita K., Oya H., Anraku Y. 1985; The Escherichia coli cytochrome b5Sb gene, cybA, is assignable as sdhC in the succinate dehydrogenase gene cluster. FEMS Microbiology Letters 30:307–311
    [Google Scholar]
  24. Ner S. S., Bhayana V., Bell A. W., Giles I. G., Duckworth H. W., Bloxham D. P. 1983; Complete sequence of the gltA gene encoding citrate synthase in Escherichia coli . Biochemistry 22:5243–5249
    [Google Scholar]
  25. Raibaud O., Schwartz M. 1984; Positive control of transcription initiation in bacteria. Annual Review of Genetics 18:173–206
    [Google Scholar]
  26. Robinson M. S., Easom R. A., Danson M. J., Weitzman P. D. J. 1983; Citrate synthase of Escherichia coli: characterisation of the enzyme from a plasmid-cloned gene and amplification of the intracellular levels. FEBS Letters 154:51–54
    [Google Scholar]
  27. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annual Review of Genetics 13:319–353
    [Google Scholar]
  28. Ruiz-Herrera J., Garcia L. G. 1972; Regulation of succinate dehydrogenase in Escherichia coli . Journal of General Microbiology 72:29–35
    [Google Scholar]
  29. Salser W., Gesteland R., F. Bolle A. 1967; In vitro synthesis of bacteriophage lysozyme. Nature, London 215:588–591
    [Google Scholar]
  30. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single¬stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  31. Sanger F., Coulson A., R„ Hong G. F., Hill D. F., Peterson G. B. 1982; Nucleotide sequence of bacteriophage λ DNA. Journal of Molecular Biology 162:729–773
    [Google Scholar]
  32. Smith M. W., Neidhardt F. C. 1983; Proteins induced by aerobiosis in Escherichia coli . Journal of Bacteriology 154:344–350
    [Google Scholar]
  33. Spasskey A., Busby S., Buc H. 1984; On the action of cyclic AMP-cyclic AMP receptor protein complex at the Escherichia coli lactose and galactose promoter regions. EMBO Journal 3:43–50
    [Google Scholar]
  34. Spencer M. E., Guest J. R. 1973; Isolation and properties of fumarate reductase mutants of Escheri¬chia coli . Journal of Bacteriology 114:563–570
    [Google Scholar]
  35. Spencer M. E., Guest J. R. 1974; Proteins of the inner membrane of Escherichia coli: changes in composition associated with anaerobic growth and fumarate reductase amber mutation. Journal of Bacteriology 117:954–959
    [Google Scholar]
  36. Spencer M. E., Guest J. R. 1982; Molecular cloning of four tricarboxylic acid cycle genes of Escherichia coli . Journal of Bacteriology 151:542–552
    [Google Scholar]
  37. Spencer M. E., Guest J. R. 1985; Transcription analysis of the sucAB, aceEF and Ipd genes of Escherichia coli . Molecular and General Genetics 200:145–154
    [Google Scholar]
  38. Spencer M. E., Darlison M. G., Stephens P. E., Duckenfield I. K., Guest J. R. 1984; Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase. European Journal of Biochemistry 141:361–374
    [Google Scholar]
  39. Squires C., Krainer A., Barry G., Shen W.-F., Squires C. L. 1981; Nucleotide sequence at the end of the gene for the RNA polymerase βʹ subunit (rpoC). Nucleic Acids Research 9:6827–6840
    [Google Scholar]
  40. Srere P. A. 1975; The enzymology of the formation and breakdown of citrate. Advances in Enzymology and Related Areas of Molecular Biology 43:57–101
    [Google Scholar]
  41. Staden R. 1977; Sequence data handling by computer. Nucleic Acids Research 4:4037–4051
    [Google Scholar]
  42. Takahashi Y. 1975; Effect of glucose and cyclic adenosine 3ʹ,5ʹ-monophosphate on the synthesis of succinate dehydrogenase and isocitrate in Escherichia coli . Journal of Biochemistry 78:1097–1100
    [Google Scholar]
  43. Valentin-Hansen P., Hojrup P., Short S. 1985; The primary structure of the DeoR repressor from Escherichia coli K-12. Nucleic Acids Research 13:5227–5236
    [Google Scholar]
  44. Vogt V. M. 1980; Purification and properties of S, nuclease from Aspergillus . Methods in Enzvmologv 65:248–255
    [Google Scholar]
  45. Walker J. E., Saraste M., Gay N. J. 1984; The unc operon, nucleotide sequence regulation and structure of ATP synthase. Biochimica et biophysica acta 768:164–200
    [Google Scholar]
  46. Walsh K., Koshland D. E. 1985; Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proceedings of the National Academy of Sciences of the United States of America 82:3577–3581
    [Google Scholar]
  47. Weitzman P. D. J. 1981; Unity and diversity in some bacterial citric acid-cycle enzymes. Advances in Microbial Physiology 22:185–244
    [Google Scholar]
  48. Wood D., Darlison M. G., Wilde R. J., Guest J. R. 1984; Nucleotide sequence encoding the flavo-protein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli . Biochemical Journal 222:519–534
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-12-3239
Loading
/content/journal/micro/10.1099/00221287-132-12-3239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error