1887

Abstract

SUMMARY: An strain unable to use gluconate was isolated by spontaneous curing of λ Δ() lysogens. Two lesions, linked to and markers, respectively, were necessary to produce this phenotype. The -linked mutation , of regulatory type, seems to affect the expression of the major system of gluconate utilization (min 75) as well as that of 6-phosphogluconate dehydratase (gene , min 41), the first enzyme of the Entner-Doudoroff pathway. A closely linked suppressor of causes constitutivity of these activities; this suppressor resembles , which is also in the region. Hence, it is possible that is a super-repressing allele of , rather than a positive controlling element. Lesion alone does not prevent the utilization of gluconate; for this, the mutation at 96.9 min is also necessary. This mutation abolishes the thermosensitive gluconokinase activity and thus eliminates the subsidiary ability to catabolize gluconate. Accordingly, seems to be allelic with , the locus postulated as being in the region specifying the thermosensitive gluconokinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-11-3209
1986-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/11/mic-132-11-3209.html?itemId=/content/journal/micro/10.1099/00221287-132-11-3209&mimeType=html&fmt=ahah

References

  1. Bächi B., Kornberg H. L. 1975; Genes involved in the uptake and catabolism of gluconate by Escherichia coli. Journal of General Microbiology 90:321–335
    [Google Scholar]
  2. Bachmann B. J. 1983; Linkage map of Escherichia coli K12. , edition 7. Microbiological Reviews 47:180–230
    [Google Scholar]
  3. Boyer B. 1964; Genetic control of restriction and modification in Escherichia coli. Journal of Bacteriology 88:1652–1660
    [Google Scholar]
  4. Cohen S. S. 1951; Gluconokinase and the oxidative path of glucose-6-phosphate utilization. Journal of Biological Chemistry 189:617–628
    [Google Scholar]
  5. Demerec M., Adelbero E. A., Clark A. J., Hartman P. E. 1966; A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76
    [Google Scholar]
  6. Eisenberg R. C., Dobrogosz W. J. 1967; Gluconate metabolism in Escherichia coli. Journal of Bacteriology 93:941–949
    [Google Scholar]
  7. Faik P., Kornberg H. L. 1973; Isolation and properties of E. coli mutants affected in gluconate uptake. FEBS Letters 32:260–264
    [Google Scholar]
  8. Fradkin J. E., Fraenkel D. G. 1971; 2-Keto-3-deoxygluconate 6-phosphate aldolase mutants of Escherichia coli. Journal of Bacteriology 108:1277–1283
    [Google Scholar]
  9. Fraenkel D. G., Horecker B. L. 1964; Pathways of D-glucose metabolism in Salmonella typhimurium. Journal of Biological Chemistry 239:2765–2771
    [Google Scholar]
  10. Fraenkel D. G., Levisohn S. R. 1967; Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. Journal of Bacteriology 93:1571–1578
    [Google Scholar]
  11. Fraenkel D. G., Vinopal R. T. 1973; Carbohydrate metabolism in bacteria. Annual Review of Microbiology 27:69–110
    [Google Scholar]
  12. Hung A., Orozco A., Zwaig N. 1970; Evidence for two gluconokinase activities in Escherichia coli. Bacteriological Proceedings Abstract148
    [Google Scholar]
  13. Istúriz T., Vitelli-Flores J., Mardeni J. 1979; El metabolismo del gluconato en E. coli. Estudio de una mutante delecionada en la región bioH asd del mapa cromosómico. Acta cientifica venezolana 30:391–395
    [Google Scholar]
  14. Kikuchi A., Elseviers D., Gorini L. 1975; Isolation and characterization of lambda transducing bacteriophages for argF, argl and adjacent genes. Journal of Bacteriology 122:727–742
    [Google Scholar]
  15. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Nagel de Zwaig R., Zwaig N., Isturiz T., Sanchez R. S. 1973; Mutations affecting gluconate metabolism in Escherichia coli. Journal of Bacteriology 114:463–468
    [Google Scholar]
  17. Peyru G., Fraenkel D. G. 1968; Genetic mapping of loci for glucose-6-phosphate dehydro¬genase, gluconate-6-phosphate dehydrogenase, and gluconate-6-phosphate dehydrase in Escherichia coli. Journal of Bacteriology 95:1272–1278
    [Google Scholar]
  18. Pouyssegur J. M., Faik P., Kornberg H. L. 1974; Utilization of gluconate by Escherichia coli. Uptake of D-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom. Biochemical Journal 140:193–203
    [Google Scholar]
  19. Shimada K., Weisberg R. A., Gottesman M. E. 1972; Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. Journal of Molecular Biology 63:483–503
    [Google Scholar]
  20. Wecksler-Albo M., Vitelli-Flores J. 1979; El sistema metabólico del gluconato en Escherichia coli. Obtención, estudio fisiológico y genético de nuevas cepas con mutaciones que afectan el sistema. Acta cientifica venezolana 30:484–490
    [Google Scholar]
  21. Wu T. T. 1966; A model for three-point analysis of random general transduction. Genetics 54:405–410
    [Google Scholar]
  22. Zighelboim S., Nagel de Zwaig R. 1973; Mapeo genético de una mutación que afecta una glucono-quinasa en Escherichia coli K12. Acta cientifica venezolana 24:Suplemento 1 p. 45
    [Google Scholar]
  23. Zwaig N., Nagel de Zwaig R., Isturiz T., Wecksler M. 1973; Regulatory mutations affecting the gluconate system in Escherichia coli. Journal of Bacteriology 114:469–473
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-11-3209
Loading
/content/journal/micro/10.1099/00221287-132-11-3209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error