1887

Abstract

SUMMARY: A segment of DNA from , which complemented a mutant sporulation gene, , in , was cloned into a derivative of the temperate bacteriophage ϕ105. The segment of DNA included an entire structural gene and complemented the mutation , in addition to , in .

The nucleotide sequence of the gene from was determined and compared with that of the gene; 74% homology was found in the coding region. Amino acid primary sequences derived from the nucleotide sequences of the two genes were also compared. The gene from coded for a protein of 344 amino acid residues, one more than the protein coded by the corresponding gene from . Comparison of the primary amino acid sequences of the two genes showed that 78% of the residues were completely conserved and 8% were semi-conserved. Variation, however, was not random, i.e. some segments were much more highly conserved than others. Both proteins had a hydrophobic region at the N-terminus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-11-3025
1986-11-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/11/mic-132-11-3025.html?itemId=/content/journal/micro/10.1099/00221287-132-11-3025&mimeType=html&fmt=ahah

References

  1. Dayhoff M. O., Schwartz R. M., Orcutt B. C. 1978; A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure vol. 5supplement 3 pp. 345–352 Edited by Dayhoff M. O. Washington, DC: National Biomedical Research Foundation;
    [Google Scholar]
  2. Dubnau D., Smith I., Morell P., Marmur J. 1965a; Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proceedings of the National Academy of Sciences of the United States of America 54:491–498
    [Google Scholar]
  3. Dubnau D., Smith I., Marmur J. 1965; b). Gene conservation in Bacillus species. II. The location of genes concerned with the synthesis of ribosomal components and soluble RNA. Proceedings of the National Academy of Sciences of the United States of America 54:724–730
    [Google Scholar]
  4. Dubnau E., Ramakrishna N., Cabane K., Smith I. 1981; Cloning of an early sporulation gene in Bacillus subtilis. Journal of Bacteriology 147:622–632
    [Google Scholar]
  5. Errington J. 1984; Efficient Bacillus subtilis cloning system using bacteriophage vector ϕ105J9. Journal of General Microbiology 130:2615–2628
    [Google Scholar]
  6. Fred E. B., Waksman S. A. 1928 Laboratory Manual of General Microbiology New York: McGraw Hill Book Company;
    [Google Scholar]
  7. Fujii M., Takagi M., Imanaka T., Aiba S. 1983; Molecular cloning of a thermostable neutral protease gene from Bacillus stearothermophilus in a vector-plasmid and its expression in Bacillus stearothermophilus and Bacillus subtilis. Journal of Bacteriology 154:831–837
    [Google Scholar]
  8. Gibson T., Gordon R. E. 1974; Genus I. Bacillus Cohn. 1872, 174. In Bergey’s Manual of Determinative Bacteriology, 8th edn. pp. 529–550 Baltimore: Williams Wilkins;
    [Google Scholar]
  9. Goldrick S., Setlow P. 1983; Expression of a Bacillus megaterium sporulation-specific gene during sporulation of Bacillus subtilis. Journal of Bacteriology 155:1459–1462
    [Google Scholar]
  10. Gray O., Chang S. 1981; Molecular cloning and expression of Bacillus licheniformis β-lactamase gene in Escherichia coli and Bacillus subtilis. Journal of Bacteriology 145:422–428
    [Google Scholar]
  11. Harris-Warrick R. M., Lederberg J. 1978; Interspecies transformation in Bacillus: sequence heterology as the major barrier. Journal of Bacteriology 133:1237–1245
    [Google Scholar]
  12. Hoch J. A., Mathews J. 1973; Chromosomal location of pleiotrophic negative sporulation mutations in Bacillus subtilis. Genetics 73:215–228
    [Google Scholar]
  13. Honjo M., Manabe K., Shimada H., Mita I., Nakayama a., Furutani Y. 1984; Cloning and expression of the gene for neutral protease of Bacillus amyloliquefaciens in Bacillus subtilis. Journal of Biotechnology 1:265–277
    [Google Scholar]
  14. James W., Mandelstam J. 1985; Protease production during sporulation of germination mutants of Bacillus subtilis and the cloning of a functional gerE gene. Journal of General Microbiology 131:2421–2430
    [Google Scholar]
  15. Jenkinson H. F. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. Journal of General Microbiology 129:1945–1958
    [Google Scholar]
  16. Jenkinson H. F., Mandelstam J. 1983; Cloning of the Bacillus subtilis lys and spoIIIB genes in phage ϕ105. Journal of General Microbiology 129:2229–2240
    [Google Scholar]
  17. Johnson W. C., Moran C. P., Jr Losick R. 1983; Two RNA polymerase sigma factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene. Nature, London 302:800–804
    [Google Scholar]
  18. Joyet P., Guerineau M., Heslot H. 1984; Cloning of a thermostable α-amylase gene from Bacillus licheniformis and its expression in Escherichia coli and Bacillus subtilis. FEMS Microbiology letters 21:353–358
    [Google Scholar]
  19. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  20. Lehtovaara P., Ulmanen I., Palva I. 1984; In vivo transcription initiation and termination sites of an α-amylase gene from Bacillus amyloliquefaciens cloned in Bacillus subtilis. Gene 30:11–16
    [Google Scholar]
  21. Lopez-Diaz I., Clarke S., Mandelstam J. 1986; spoIID operon of Bacillus subtilis: cloning and sequence. Journal of General Microbiology 132:341–354
    [Google Scholar]
  22. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  24. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  25. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Research 9:309–321
    [Google Scholar]
  26. Norrander J., Kempe T., Messing J. 1983; Improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  27. Ortlepp S. A., Ollington J. F., McConnell D. J. 1983; Molecular cloning in Bacillus subtilis of a Bacillus licheniformis gene encoding a thermostable α-amylase. Gene 23:267–276
    [Google Scholar]
  28. Palva I. 1982; Molecular cloning of the α-amylase gene from Bacillus amyloliquefaciens and its expression in Bacillus subtilis. Gene 19:81–87
    [Google Scholar]
  29. Palva I., Pettersson R. F., Kalkkinaen N., Lehtovaara P., Sarvas M., Soderlund H., Takkinen K., Kaariainen L. 1981; Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the a-amylase gene from Bacillus amyloliquefaciens. Gene 15:43–51
    [Google Scholar]
  30. Perlman D., Halvorson H. O. 1983; A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  31. te Riele H. P., Venema G. 1982a; Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis. I. Processing of B. pumilus and B. licheniformis DNA in B. subtilis. Genetics 101:179–188
    [Google Scholar]
  32. te Riele H. P., Venema G. 1982b; Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis. II. Unstable association of heterologous DNA with the recipient chromosome. Genetics 102:329–340
    [Google Scholar]
  33. te Riele H. P., Venema G. 1984; Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis: further characterization of unstable association between donor and recipient DNA and the involvement of the cellular membrane. Molecular and General Genetics 195:200–208
    [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  35. Schaeffer P., Ionesco H., Ryter A., Balassa G. 1965; La sporulation de Bacillus subtilis: etude genetique et physiologique. Colloques internationaux du Centre national de la recherche scientifique 124:553–563
    [Google Scholar]
  36. Seki T., Oshima T., Oshima Y. 1975; Taxonomic study of Bacillus by deoxyribonucleic acid hybridisation and interspecific transformation. International Journal of Systematic Bacteriology 25:258–270
    [Google Scholar]
  37. Seki T., Chung W. C., Mikani H., Oshima Y. 1978; Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. International Journal of Systematic Bacteriology 28:182–189
    [Google Scholar]
  38. Seki T., Tsunekawa H., Nakamura K., Yo shimura K., Oshima Y. 1979; Conserved genes in Bacillus subtilis and related species. Journal of Fermentation Technology 57:488–504
    [Google Scholar]
  39. Shine J., Dalgarno L. 1974; The 3ʹ-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 71:1342–1346
    [Google Scholar]
  40. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  41. Sterlini J. M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochemical Journal 113:29–37
    [Google Scholar]
  42. Trempy J. E., Haldenwang W. G. 1985; σ29-like protein is a common sporulation-specific element in bacteria of the genus Bacillus. Journal of Bacteriology 164:1356–1358
    [Google Scholar]
  43. Trempy J. E., Bonamy C., Szulmajster J., Haldenwang W. G. 1985; Bacillus subtilis sigma factor σ29 is the product of the sporulation-essential gene spoIIG. Proceedings of the National Academy of Sciences of the United States of America 82:4189–4192
    [Google Scholar]
  44. Wang W., Mezes P. S. F., Yang Y. Q., Blacher R. W., Lampen J. O. 1985; Cloning and sequencing of the β-lactamase I gene of Bacillus cereus 5/B and its expression in Bacillus subtilis. Journal of Bacteriology 163:487–492
    [Google Scholar]
  45. Weinrauch Y., Dubnau D. 1983; Plasmid marker rescue transformation in Bacillus subtilis. Journal of Bacteriology 154:1077–1087
    [Google Scholar]
  46. Wells J. A., Ferrari E., Henner D. J., Estell D. A., Chen E. Y. 1983; Cloning, sequencing and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Research 11:7911–7925
    [Google Scholar]
  47. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  48. Yoshimura K., Ikenaka Y., Murai M., Tanabe M., Seki T., Oshima Y. 1983; Construction of a Bacillus subtilis cloning vehicle with heterologous DNA sequence. Gene 24:255–263
    [Google Scholar]
  49. Young M., Mandelstam J. 1979; Early events during bacterial endospore formation. Advances in Microbial Physiology 20:103–162
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-11-3025
Loading
/content/journal/micro/10.1099/00221287-132-11-3025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error