1887

Abstract

SUMMARY: The expression of the and sporulation loci of was examined by using DNA-RNA hybridization to detect the time of appearance of their corresponding mRNA molecules in wild-type and asporogenous mutants of . From the size of the mRNA molecules it is clear that both the and loci are polycistronic operons. Neither of the mRNA molecules is polyadenylated. The results also indicate the operon is regulated by two promoters which become functional at different times.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-11-3005
1986-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/11/mic-132-11-3005.html?itemId=/content/journal/micro/10.1099/00221287-132-11-3005&mimeType=html&fmt=ahah

References

  1. Aviv H., Leder P. 1972; Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proceedings of the National Academy of Sciences of the United States of America 69:1408–1412
    [Google Scholar]
  2. Coote J. G., Mandelstam J. 1973; Use of constructed double mutants for determining the temporal order of expression of sporulating genes in Bacillus subtilis. Journal of Bacteriology 114:1254–1263
    [Google Scholar]
  3. Dion P., Mandelstam J. 1980; Germination properties as marker events characterizing later stages of Bacillus subtilis spore formation. Journal of Bacteriology 141:786–792
    [Google Scholar]
  4. Errington J., Mandelstam J. 1986a; Use of a lacZ gene fusion to determine the dependence pattern of sporulation operon spoIIA in spo mutants of Bacillus subtilis. Journal of General Microbiology 132:2967–2976
    [Google Scholar]
  5. Errington J., Mandelstam J. 1986a; Use of a lacZ gene fusion to determine the dependence pattern and the spore compartment expression of sporulation operon spoVA in spo mutants of Bacillus subtilis. Journal of General Microbiology 132:2977–2985
    [Google Scholar]
  6. Errington J., Fort P., Mandelstam J. 1985; Duplicated sporulation genes in bacteria: implications for simple developmental systems. FEBS Letters 188:184–188
    [Google Scholar]
  7. Fort P., Errington J. 1985; Nucleotide sequence and complementation analysis of a polycistronic sporulation operon, spoVA, in Bacillus subtilis. Journal of General Microbiology 131:1091–1105
    [Google Scholar]
  8. Fort P., Piggot P. J. 1984; Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. Journal of General Microbiology 130:2147–2153
    [Google Scholar]
  9. Ionesco H., Michel J., Cami B., Schaeffer P. 1970; Genetics of sporulation in Bacillus subtilis Marburg. Journal of Applied Bacteriology 33:13–24
    [Google Scholar]
  10. Jenkinson H. F., Sawyer W. D., Mandelstam J. 1981; Synthesis and order of assembly of spore coat proteins in Bacillus subtilis. Journal of General Microbiology 123:1–16
    [Google Scholar]
  11. Kerjan P., Jayaraman K., Szulmajster J. 1982; Studies on the nature and role of polyadenylated RNA in spore development of Bacillus subtilis. Molecular and General Genetics 185:448–453
    [Google Scholar]
  12. Liu H., -M., Chak K. F., Piggot P. J. 1982; Isolation and characterization of a recombinant plasmid carrying a functional part of the Bacillus subtilis spoIIA locus. Journal of General Microbiology 128:2805–2812
    [Google Scholar]
  13. Losick R., Pero J. 1981; Cascades of sigma factors. Cell 25:582–584
    [Google Scholar]
  14. Mandelstam J. 1969; Regulation of bacterial spore formation. Symposia of the Society for General Microbiology 19:377–402
    [Google Scholar]
  15. Mandelstam J. 1976; ) Bacterial sporulation: a problem in the biochemistry and genetics of a primitive developmental system. Proceedings of the Royal Society B193:89–106
    [Google Scholar]
  16. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual pp. 196–198 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Piggot P. J. 1973; Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporulation operons. Journal of Bacteriology 114:1241–1253
    [Google Scholar]
  18. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriological Reviews 40:908–962
    [Google Scholar]
  19. Piggot P. J., Hoch J. A. 1985; Revised genetic linkage map of Bacillus subtilis. Microbiological Reviews 49:158–179
    [Google Scholar]
  20. Piggot P. J., Curtis C. A. M., de Lencastre H. 1984; Use of integrational plasmid vectors to demonstrate the polycistronic nature of a transcriptional unit (spoIIA) required for sporulation of Bacillus subtilis. Journal of General Microbiology 130:2123–2136
    [Google Scholar]
  21. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  22. Sawa D., Mandelstam J. 1984; Cloning of the Bacillus subtilis spoIIA and spoVA loci in phage ϕ105DI: It. Journal of General Microbiology 130:2137–2145
    [Google Scholar]
  23. Savva D., Mandelstam J. 1985; Use of cloned spoIIA and spoVA probes to study synthesis of mRNA in wild-type and asporogenous mutants of Bacillus subtilis. In Molecular Biology of Microbial Differentiation (Spores IX) pp. 55–59 Edited by Setlow P., Hoch J. A. Washington, DC: American Society for Microbiology.;
    [Google Scholar]
  24. Segall J., Losick R. 1977; Cloned Bacillus subtilis DNA containing a gene that is activated early during sporulation. Cell 11:75–61
    [Google Scholar]
  25. Sterlini J. M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to actinomycin resistance. Biochemical Journal 113:29–37
    [Google Scholar]
  26. Trempy J. E., Morrison-Plummer J., Halden-wang W. G. 1985; Synthesis of sigma 29, an RNA polymerase specificity determinant, is a develop¬mentally regulated event in Bacillus subtilis. Journal of Bacteriology 161:340–346
    [Google Scholar]
  27. Westpheling J., Ranes M., Losick R. 1985; RNA polymerase heterogeneity in Streptomyces coelicolor. Nature, London 313:22–27
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-11-3005
Loading
/content/journal/micro/10.1099/00221287-132-11-3005
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error