1887

Abstract

SUMMARY: The gene, which is involved in sporulation, was fused to the β-galactosidase gene, , of so that the expression of β-galactosidase would be under the control of the locus. When the fused product was inserted into the chromosome, production of β-galactosidase indicated that the gene was expressed 1.5 h after the start of sporulation. When the fusion was inserted into the chromosome of sporulation mutants, all strains carrying lesions and those with mutations in , and loci failed to make β-galactosidase. The proposed provisional order of expression of operons governing stage II is [, ] [, , ].

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-11-2987
1986-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/11/mic-132-11-2987.html?itemId=/content/journal/micro/10.1099/00221287-132-11-2987&mimeType=html&fmt=ahah

References

  1. Coote J. G. 1972a; Sporulation in Bacillus subtilis. Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. Journal of General Microbiology 71:1–15
    [Google Scholar]
  2. Coote J. G. 1972b; Sporulation in Bacillus subtilis. Genetic analysis of oligosporogenous mutants. Journal of General Microbiology 71:17–27
    [Google Scholar]
  3. Errington J. 1984; Efficient Bacillus subtilis cloning system using bacteriophage vector ϕ105J9. Journal of General Microbiology 130:2615–2628
    [Google Scholar]
  4. Errington J. 1986; A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. Journal of General Microbiology 132:2953–2966
    [Google Scholar]
  5. Errington J., Mandelstam J. 1986a; Use of a lacZ gene fusion to determine the dependence pattern of sporulation operon spoIIA in spo mutants of Bacillus subtilis. Journal of General Microbiology 132:2967–2976
    [Google Scholar]
  6. Errington J., Mandelstam J. 1986b; Use of a lacZ gene fusion to determine the dependence pattern and the spore compartment expression of sporulation operon spoVA in spo mutants of Bacillus subtilis. Journal of General Microbiology 132:2977–2985
    [Google Scholar]
  7. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis. Journal of Bacteriology 154:1513–1515
    [Google Scholar]
  8. Hoch J. A., Mathews J. L. 1973; Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. Genetics 73:215–228
    [Google Scholar]
  9. Hranueli D., Piggot P. J., Mandelstam J. 1974; Statistical estimate of the total number of operons specific for Bacillus subtilis sporulation. Journal of Bacteriology 119:684–690
    [Google Scholar]
  10. Ionesco H., Michel J., Cami B., Schaeffer P. 1970; Genetics of sporulation in Bacillus subtilis Marburg. Journal of Applied Bacteriology 33:13–24
    [Google Scholar]
  11. Jenkinson H. F. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. Journal of General Microbiology 129:1945–1958
    [Google Scholar]
  12. Lamont I. L., Mandelstam J. 1984; Identification of a new sporulation locus, spoIIIF, in Bacillus subtilis. Journal of General Microbiology 130:1253–1261
    [Google Scholar]
  13. Lopez-Diaz I., Clarke S., Mandelstam J. 1986; spoIID operon of Bacillus subtilis: cloning and sequence. Journal of General Microbiology 132:341–354
    [Google Scholar]
  14. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  15. Piggot P. J. 1973; Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporulation operons. Journal of Bacteriology 114:1241–1253
    [Google Scholar]
  16. Savva D., Mandelstam J. 1984; Cloning of the Bacillus subtilis spoIIA and spoVA genes in phage ϕ105DI:lt. Journal of General Microbiology 130:2137–2145
    [Google Scholar]
  17. Savva D., Mandelstam J. 1985; Use of cloned spoIIA and spoVA probes to study synthesis of mRNA in wild-type and asporogenous mutants of Bacillus subtilis. In Molecular Biology of Microbial Differentiation pp. 55–59 Edited by Setlow P., Hoch J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Sterlini J. M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to the development of actinomycin resistance. Biochemical Journal 113:29–37
    [Google Scholar]
  19. Trempy J. E., Morrison-Plummer J., Halden-wang W. G. 1985a; Synthesis of σ29, an RNA polymerase specificity determinant, is a developmentally regulated event in Bacillus subtilis. Journal of Bacteriology 161:340–346
    [Google Scholar]
  20. Trempy J. E., Bonamy C., Szulmajster J., Haldenwang W. G. 1985b; Bacillus subtilis sigma factor σ29 is the product of the sporulation-essential gene spoIIG. Proceedings of the National Academy of Sciences of the United States of America 82:4189–4192
    [Google Scholar]
  21. Waites W. M., Kay D., Dawes I. W., Wood D. A., Warren S. C., Mandelstam J. 1970; Sporulation in Bacillus subtilis: correlation of biochemical events with morphological changes in asporogenous mutants. Biochemical Journal 118:667–676
    [Google Scholar]
  22. Ward J. B., Jr Zahler S. A. 1973; Genetic studies of leucine biosynthesis in Bacillus subtilis. Journal of Bacteriology 116:719–726
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-11-2987
Loading
/content/journal/micro/10.1099/00221287-132-11-2987
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error