1887

Abstract

SUMMARY: A :: gene fusion has been used to investigate the dependence pattern of expression of the operon during sporulation in . β-Galactosidase activity, encoded by the hybrid gene, begins to appear about 30 to 60 min after the induction of sporulation. expression is dependent upon the products of all of the known loci but on none of the “later” loci tested. The β-galactosidase activity falls after 1.5 h in Spo cells and in late-blocked mutants, but continued accumulation of the enzyme occurs in certain stage II mutants. Kinetic experiments suggest that the fall in activity may be, in part, the result of regulation at the level of translation. Mutations in several loci, , and , delay expression of the operon by 1-3 h. The significance of these results in terms of models for the control of gene expression during sporulation is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-11-2967
1986-11-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/11/mic-132-11-2967.html?itemId=/content/journal/micro/10.1099/00221287-132-11-2967&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. Journal of Bacteriology 81:741–746
    [Google Scholar]
  2. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. 1983; β-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods in Enzymology 100:293–308
    [Google Scholar]
  3. Clarke S., Lopez-Diaz I., Mandelstam J. 1986; Use of lacZ gene fusions to determine the dependence pattern of the sporulation gene spoIID in spo mutants of Bacillus subtilis. Journal of General Microbiology 132:2987–2994
    [Google Scholar]
  4. Coote J. G. 1972; Sporulation in Bacillus subtilis. Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. Journal of General Microbiology 71:1–15
    [Google Scholar]
  5. Coote J. G., Mandelstam J. 1973; Use of constructed double mutants for determining the temporal order of expression of sporulation genes in Bacillus subtilis. Journal of Bacteriology 114:1254–1263
    [Google Scholar]
  6. Duvall E. J., Mongkolsuk S., Kim U. J., Lovett P. S., Henkin T. M., Chambliss G. H. 1985; Induction of the chloramphenicol acetyltransferase gene cat-86 through the action of the ribosomal antibiotic amicetin: involvement of a Bacillus subtilis ribosomal component in cat induction. Journal of Bacteriology 161:665–672
    [Google Scholar]
  7. Errington J. 1986; A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. Journal of General Microbiology 132:2953–2966
    [Google Scholar]
  8. Errington J., Mandelstam J. 1983; Variety of sporulation phenotypes resulting from mutations in a single regulatory locus, spoIIA, in Bacillus subtilis. Journal of General Microbiology 129:2091–2101
    [Google Scholar]
  9. Errington J., Mandelstam J. 1984; Genetic and phenotypic characterization of a cluster of mutations in the spoVA locus of Bacillus subtilis. Journal of General Microbiology 130:2115–2121
    [Google Scholar]
  10. Errington J., Mandelstam J. 1986; Use of a lacZ gene fusion to determine the dependence pattern and the spore compartment expression of sporulation operon spoVA in spo mutants of Bacillus subtilis. Journal of General Microbiology 132:2977–2985
    [Google Scholar]
  11. Errington J., Fort P., Mandelstam J. 1985; Duplicated sporulation genes in bacteria. Implica¬tions for simple developmental systems. FEBS Letters 188:184–188
    [Google Scholar]
  12. Ferrari F. A., Trach K., Hoch J. A. 1985; Sequence analysis of the spo0B locus reveals a polycistronic transcription unit. Journal of Bacteriology 161:556–562
    [Google Scholar]
  13. Fisher S., Rothstein D., Sonenshein A. L. 1975; Ribonucleic acid synthesis in permeabilized mutant and wild-type cells of Bacillus subtilis. In Spores VI pp. 226–230 Edited by Gerhardt P., Costilow R. N., Sadoff H. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Fort P., Piggot P. J. 1984; Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. Journal of General Microbiology 130:2147–2153
    [Google Scholar]
  15. Hill S. H. 1983; spoVHand spoVJ-new sporulation loci in Bacillus subtilis 168. Journal of General Microbiology 129:293–302
    [Google Scholar]
  16. Hoch J. A., Mathews J. L. 1973; Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. Genetics 73:215–228
    [Google Scholar]
  17. Horinouchi S., Weisblum B. 1980; Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proceedings of the National Academy of Sciences of the United States of America 77:7079–7083
    [Google Scholar]
  18. Hranueli D., Piggot P. J., Mandelstam J. 1974; Statistical estimate of the total number of operons specific for Bacillus subtilis sporulation. Journal of Bacteriology 119:684–690
    [Google Scholar]
  19. Ionesco H., Schaeffer P. 1968; Localisation chromosomique de certain mutants asporogenes de Bacillus subtilis Marburg. Annales de I’lnstitut Pasteur 114:1–9
    [Google Scholar]
  20. Ionesco H., Michel J., Cami B., Schaeffer P. 1970; Genetics of sporulation in Bacillus subtilis Marburg. Journal of Applied Bacteriology 33:13–24
    [Google Scholar]
  21. James W., Mandelstam J. 1985; spoVIC, a new sporulation locus in Bacillus subtilis affecting spore coats, germination and the rate of sporulation. Journal of General Microbiology 131:2409–2419
    [Google Scholar]
  22. Jenkinson H. F. 1981; Germination and resistance defects in spores of a Bacillus subtilis mutant lacking a coat polypeptide. Journal of General Microbiology 127:81–89
    [Google Scholar]
  23. Jenkinson H. F. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. Journal of General Microbiology 129:1945–1958
    [Google Scholar]
  24. Jenkinson H. F., Lord H. 1983; Protease deficiency and its association with defects in spore coat structure, germination and resistance properties in a mutant of Bacillus subtilis. Journal of General Microbiology 129:2727–2737
    [Google Scholar]
  25. Jenkinson H. F., Mandelstam J. 1983; Cloning of the Bacillus subtilis lys and spoIIIB genes in phage ϕ105. Journal of General Microbiology 129:2229–2240
    [Google Scholar]
  26. Jenkinson H. F., Kay D., Mandelstam J. 1980; Temporal dissociation of late events in Bacillus subtilis sporulation from expression of the genes that determine them. Journal of Bacteriology 141:793–805
    [Google Scholar]
  27. Jenkinson H. F., Sawyer W. D., Mandelstam J. 1981; Synthesis and order of assembly of spore coat proteins in Bacillus subtilis. Journal of General Microbiology 123:1–16
    [Google Scholar]
  28. Kalnins A., Otto K., Ruther U., Muller-Hill B. 1983; Sequence of the lacZ gene of Escherichia coli. EMBO Journal 2:593–597
    [Google Scholar]
  29. Lamont I. L., Mandelstam J. 1984; Identification of a new sporulation locus, spoIIIF, in Bacillus subtilis. Journal of General Microbiology 130:1253–1261
    [Google Scholar]
  30. Liu H., -M., Chak K. F., Piggot P. J. 1982; Isolation and characterization of a recombinant plasmid carrying a functional part of the Bacillus subtilis spoIIA locus. Journal of General Microbiology 128:2805–2812
    [Google Scholar]
  31. Losick R., Youngman P. 1984; Endospore formation in Bacillus. In Microbial Development pp. 63–88 Edited by Losick R., Shapiro L. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  32. Mandelstam J. 1969; Regulation of bacterial spore formation. Symposia of the Society for General Microbiology 19:377–402
    [Google Scholar]
  33. Mandelstam J. 1976; Bacterial sporulation: a problem in the biochemistry and genetics of a primitive developmental system. Proceedings of the Royal Society B193:89–106
    [Google Scholar]
  34. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Moir A. 1981; Germination of a spore coat-defective mutant of Bacillus subtilis. Journal of Bacteriology 146:1106–1116
    [Google Scholar]
  36. Nomura M., Gourse R., Baughman G. 1984; Regulation of the synthesis of ribosomes and ribosomal components. Annual Review of Biochemistry 53:75–117
    [Google Scholar]
  37. Piggot P. J. 1973; Mapping of asporogenous mutations of Bacillus subtilis : a minimum estimate of the number of sporulation operons. Journal of Bacteriology 114:1241–1253
    [Google Scholar]
  38. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriological Reviews 40:908–962
    [Google Scholar]
  39. Piggot P. J., Moir A., Smith D. A. 1981; Advances in the genetics of Bacillus subtilis differen¬tiation. In Sporulation and Germination pp. 29–39 Edited by Levinson H. S., Sonenshein A. L., Tipper D. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Piggot P. J., Curtis C. A. M., Lencastre H. 1984; Use of integrational plasmid vectors to demonstrate the polycistronic nature of a transcriptional unit (spoIIA) required for sporulation of Bacillus subtilis. Journal of General Microbiology 130:2123–2136
    [Google Scholar]
  41. Piggot P. J., Chapman J. W., Curtis C. A. M. 1985; Analysis of the control of spo gene expression in Bacillus subtilis. In Molecular Biology of Microbial Differentiation pp. 15–21 Edited by Setlow P., Hoch J. Washington, DC: American Society for Microbiology.;
    [Google Scholar]
  42. Rosenbluh A., Banner C. D., Losick R., Fitz-James P. C. 1981; Identification of a new developmental locus in Bacillus subtilis by construction of a deletion mutation in a cloned gene under sporulation control. Journal of Bacteriology 148:341–351
    [Google Scholar]
  43. Sastry K. J., Srivastava O. P., Millet J., Fitz-James P. C., Aronson A. I. 1983; Characerization of Bacillus subtilis mutants with a temperature-sensitive intracellular protease. Journal of Bacteriology 153:511–519
    [Google Scholar]
  44. Savva D., Mandelstam J. 1984; Cloning of the Bacillus subtilis spoIIA and spoVA loci in phage ϕ105DI: It. Journal of General Microbiology 130:2137–2145
    [Google Scholar]
  45. Savva D., Mandelstam J. 1985; Use of cloned spoIIA and spoVA probes to study synthesis of mRNA in wild-type and asporogenous mutants of Bacillus subtilis. In Molecular Biology of Microbial Differentiation pp. 55–59 Edited by Setlow P., Hoch J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  46. Savva D., Mandelstam J. 1986; Synthesis of spoIIA and spoVA mRNA in Bacillus subtilis. Journal of General Microbiology 132:3005–3011
    [Google Scholar]
  47. Segall J., Losick R. 1977; Cloned Bacillus subtilis DNA containing a gene that is activated early during sporulation. Cell 11:751–761
    [Google Scholar]
  48. Springer M., Plumbridge J. A., Butler J. S., Graffe M., Dondon J., Mayaux J. F., Fayat G., Lestienne P., Blanquet S., Grunberg-Manago M. 1985; Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. Journal of Molecular Biology 185:93–104
    [Google Scholar]
  49. Stephens M. A., Lang N., Sandman K., Losick R. 1984; A promoter whose utilization is temporally regulated during sporulation in Bacillus subtilis. Journal of Molecular Biology 176:333–348
    [Google Scholar]
  50. Sterlini J. M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochemical Journal 113:29–37
    [Google Scholar]
  51. Stragier P., Bouvier J., Bonamy C., Szulmajster J. 1984; A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. Nature, London 312:376–378
    [Google Scholar]
  52. Stragier P., Parsot C., Bouvier J. 1985; Two functional domains conserved in major and alternate bacterial sigma factors. FEBS Letters 187:11–15
    [Google Scholar]
  53. Trempy J. E., Morrison-Plummer J., Haldenwang W. G. 1985a; Synthesis of σ29, an RNA polymerase specificity determinant, is a developmentally regulated event in Bacillus subtilis. Journal of Bacteriology 161:340–346
    [Google Scholar]
  54. Trempy J. E., Bonamy C., Szulmajster J., Haldenwang W. G. 1985b; Bacillus subtilis a factor σ29 is the product of the sporulation-essential gene spoIIG. Proceedings of the National Academy of Sciences of the United States of America 82:4189–4192
    [Google Scholar]
  55. Turner S. M., Errington J., Mandelstam J. 1986; Use of a lacZ gene fusion to determine the dependence pattern of the sporulation operon spoIIIC in spo mutants of Bacillus subtilis: a branched pattern of expression of sporulation operons. Journal of General Microbiology 132:2995–3003
    [Google Scholar]
  56. Waites W. M., Kay D., Dawes I. W., Wood D. A., Warren S. C., Mandelstam J. 1970; Sporuiation in Bacillus subtilis. Correlation of biochemical events with morphological changes in asporogenous mutants. Biochemical Journal 118:667–676
    [Google Scholar]
  57. Ward J. B., Jr Zahler S. A. 1973; Genetic studies of leucine biosynthesis in Bacillus subtilis. Journal of Bacteriology 116:719–726
    [Google Scholar]
  58. Wood D. A. 1972; Properties and time of synthesis of alkali-soluble protein of the spore coat. Biochemical Journal 130:505–514
    [Google Scholar]
  59. Yudkin M. D., Turley L. 1980; Suppression of asporogeny in Bacillus subtilis. Allele-specific suppression of a mutation in the spoIIA locus. Journal of General Microbiology 121:69–78
    [Google Scholar]
  60. Yudkin M. D., Turley L. 1981; Mapping of six mutations in the spoIIA locus of Bacillus subtilis and studies of their response to a nonsense suppressor. Journal of General Microbiology 124:255–261
    [Google Scholar]
  61. Yudkin M. D., Jarvis K. A., Raven S. E., Fort P. 1985; Effects of transition mutations in the regulatory locus spoIIA on the incidence of sporulation in Bacillus subtilis. Journal of General Microbiology 131:959–962
    [Google Scholar]
  62. Zuber P., Losick R. 1983; Use of a lacZ fusion to study the role of the spo0 genes of Bacillus subtilis in developmental regulation. Cell 35:275–283
    [Google Scholar]
/content/journal/micro/10.1099/00221287-132-11-2967
Loading
/content/journal/micro/10.1099/00221287-132-11-2967
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error