Restriction Mapping and Close Relationship of the DNA of Phages 121 and SE-5 Free

Abstract

SUMMARY: The biological properties and genome structure of two actinophages, 121 and SE-5, infecting were characterized. They had the same host range (limited to ) and similar DNA G + C contents (around 60 mol %). Restriction maps of their genomes also showed many similarities. The close relationship between the two phages was confirmed by DNA hybridization experiments: large parts of their genomes were homologous, except for a segment in the middle of the map, where no hybridization was detected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-10-2937
1986-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/10/mic-132-10-2937.html?itemId=/content/journal/micro/10.1099/00221287-132-10-2937&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages London: Interscience Publications;
    [Google Scholar]
  2. Anné J., Wohlleben W., Burkardt H. J., Springer R., Pühler A. 1984; Morphological and molecular characterization of several actinophages isolated from soil which lyse Streptomyces cattleya or S. venezuelae. Journal of General Microbiology 130:2639–2649
    [Google Scholar]
  3. Anné J., Verheyen P., Volckaert G., Eyssen H. 1985; A restriction endonuclease map of Streptomyces phage VWB. Molecular & General Genetics 200:506–507
    [Google Scholar]
  4. Botstein D. 1980; A theory of modular evolution for bacteriophages. Annals of the New York Academy of Sciences 354:484–491
    [Google Scholar]
  5. Cox K. L., Baltz R. H. 1984; Restriction of bacteriophage plaque formation in Streptomyces spp. Journal of Bacteriology 159:499–504
    [Google Scholar]
  6. Davis R. W., Botstein D., Roth J. R. 1980 Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Greene J., Goldberg R. B. 1985; Isolation and preliminary characterization of lytic and lysogenic phages with wide host range within the Streptomycetes. Journal of General Microbiology 131:2459–2465
    [Google Scholar]
  8. Gurkau M., Ostrowska-Krysiak B. 1972; Selection and characteristics of actinophage-resistant variants of Streptomyces erythraeus IA 64-575. Acta microbiologica polonica B4:23–30
    [Google Scholar]
  9. Klaus S., Krügel H., Süss F., Neigenfind M., Zimmermann I., Taubeneck U. 1981; Properties of the temperate actinophage SH10. Journal of General Microbiology 123:269–279
    [Google Scholar]
  10. Lomovskaya N. D., Chater K. F., Mkrtumian N. M. 1980; Genetics and molecular biology of Streptomyces bacteriophages. Microbiological Reviews 44:206–229
    [Google Scholar]
  11. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods in Enzymology 12B:195–208
    [Google Scholar]
  12. Ogata S., Suenaga H., Hayashida S. 1985; A temperate phage of Streptomyces azureus. Applied and Environmental Microbiology 49:201–204
    [Google Scholar]
  13. Ostrowska-Krysiak B. 1974; Some aspects of erythromycin biosynthesis. Postępy higieny i medycyny doświadczalnej 28:515–525
    [Google Scholar]
  14. Ostrowska-Krysiak B., Gurkau M., Sokolowska B., Sikora D., Bloǹska A. 1971; New variants of actinophages acting upon Streptomyces erythraeus. Acta microbiologica polonica B3:195–201
    [Google Scholar]
  15. Rautenstein Ya. I., Retinskaya V. I. 1963; Comparative study of the effect on Actinomyces erythreus of specific actinophages of varying virulence. Microbiology 32:642–649
    [Google Scholar]
  16. Retinskaya V. I., I Rautenstein, Ya. 1960; The lysogenicity of Actinomyces erythreus cultures and the isolation of their specific actinophages. Microbiology 29:849–855
    [Google Scholar]
  17. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–250
    [Google Scholar]
  18. Roberts R. J. 1984; Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research 12:r167–r196
    [Google Scholar]
  19. Singh L., Jones K. W. 1984; The use of heparin as a simple cost-effective means of controlling background in nucleic acid hybridization procedures. Nucleic Acids Research 12:5627–5638
    [Google Scholar]
  20. Smith G. E., Summers M. D. 1980; The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl paper. Analytical Biochemistry 109:123–129
    [Google Scholar]
  21. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  22. Ulitzur S. 1972; Rapid determination of DNA base composition by ultraviolet spectroscopy. Biochimica et biophysica acta 272:1–11
    [Google Scholar]
  23. Walter F., Hartmann M., Klaus S. 1981; Restriction endonuclease analysis of DNA from the Streptomyces phages SH3, SH5, SH10 and SH13. Gene 13:57–63
    [Google Scholar]
  24. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. 1970; Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734–744
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-10-2937
Loading
/content/journal/micro/10.1099/00221287-132-10-2937
Loading

Data & Media loading...

Most cited Most Cited RSS feed