1887

Abstract

SUMMARY: A restriction map for the 87 kbp IncP9 naphthalene catabolic plasmid pWW60-1 is presented. Transposon mutants were obtained using direct Tn5 insertion or using an indirect method involving the intermediate formation of unstable cointegrates between RP4 and pWW60-1. Insertions which affected expression of the early enzymes of the pathway (naphthalene to salicylate) were separated from inserts which affected expression of salicylate hydroxylase () or catechol 2,3-oxygenase (). were cloned on a contiguous region of the plasmid on either a 6.9 kbp dIII fragment (HE) or a 5.7 kbp I fragment (XD). were cloned on a region situated about 30 kbp from on an I fragment (XC), but was only expressed on the corresponding but smaller I fragments from two derivative plasmids of pWW60-1 with a deletion in that region. The detailed restriction map of shows no similarities with the restriction maps of the genes for catechol 2,3-oxygenases from TOL plasmids, although the cloned gene did hybridize with genes for catechol 2,3-oxygenase from two different TOL plasmids. The organization of the catabolic genes on pWW60-1 suggests a separation into two operons as also described for the naphthalene catabolic plasmid NAH7 (alternatively called pIG7), but the relative directions of their transcription differs from that in NAH7.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-10-2919
1986-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/10/mic-132-10-2919.html?itemId=/content/journal/micro/10.1099/00221287-132-10-2919&mimeType=html&fmt=ahah

References

  1. Bachman B. J. 1972; Pedigrees of some mutant strains of E. coli K12. Bacteriological Reviews 30:525–557
    [Google Scholar]
  2. Bagdasarian N., Franklin F. C. H., Lurz R., Ruckert B., Bagdasarian N. N., Timmis K. N. 1981; Specific purpose vectors. II. Broad host range high copy number RSF 1010-derived vectors, and a host: vector system for gene cloning. Gene 16:237–247
    [Google Scholar]
  3. Barnsley E. A. 1976; Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolising naphthalene and salicylate. Journal of Bacteriology 125:404–408
    [Google Scholar]
  4. Bayley S. A., Duggleby C. J., Worsey M. J., Williams P. A., Hardy K. G., Broda P. 1977; Two modes of loss of the TOL function from Pseudomonas putida mt-2. Molecular and General Genetics 154:203–204
    [Google Scholar]
  5. Bolivar F., Rodgriguez R. L., Green P. J., Belach H. C., Heynecker H. L., Boyer H. W., Crosa J. J., Falkow S. 1977; Construction and characterisation of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  6. Boronin A. M., Kochetov V. V., Starovoitov I. I., Skryabin G. K. 1977; Plasmids pBS2 and pBS3, controlling the oxidation of naphthalene in bacteria of the genus Pseudomonas. Dokladȳ Academii nauk SSSR 237:1205–1208
    [Google Scholar]
  7. Boronin A. M., Kochetov V. V., Skryabin G. K. 1980; Incompatibility groups of naphthalene degradative plasmids in Pseudomonas. FEMS Microbiology Letters 7:249–252
    [Google Scholar]
  8. Cane P. A., Williams P. A. 1982; The plasmid-coded metabolism of naphthalene and 2-methyl-naphthalene in Pseudomonas strains: phenotypic changes correlated with structural modification of the plasmid pWW60-1. Journal of General Microbiology 128:2281–2290
    [Google Scholar]
  9. Catterall F. A., Sala-Trepat J. M., Williams P. A. 1971; The coexistence of pathways for the metabolism of 2-hydroxymuconic semialdehyde in a naphthalene-grown pseudomonad. Biochemical and Biophysical Research Communications 43:463–469
    [Google Scholar]
  10. Cohen S. N., Chang A. C. Y., Hsu C. L. 1972; Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R factor DNA. Proceedings of the National Academy of Sciences of the United States of America 69:2110–2114
    [Google Scholar]
  11. Connors M. A., Barnsley E. A. 1982; Naphthalene plasmids in Pseudomonads. Journal of Bacteriology 149:1096–1101
    [Google Scholar]
  12. Davies J. I., Evans W. C. 1964; Oxidative metabolism of naphthalene by soil pseudomonads. Biochemical Journal 91:251–261
    [Google Scholar]
  13. Dunn N. W., Gunsalus I. C. 1973; Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. Journal of Bacteriology 114:974–979
    [Google Scholar]
  14. Ensley B. D., Ratzkin B. J., Osseund T. D., Simon M. J., Wackett L. P., Gibson D. T. 1983; Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169
    [Google Scholar]
  15. Franklin F. C. H., Williams P. A. 1980; Construction of a partial diploid for the degradation pathway encoded by the TOL plasmid (pWW0) from Pseudomonas putida mt-2: evidence for the positive nature of the regulation by the xylR gene. Molecular and General Genetics 177:321–328
    [Google Scholar]
  16. Grinter N. J. 1983; A broad-host range cloning vector transposable to various replicons. Gene 21:133–143
    [Google Scholar]
  17. Grund A. D., Gunsalus I. C. 1983; Cloning of genes for naphthalene metabolism in Pseudomonas putida. Journal of Bacteriology 156:89–94
    [Google Scholar]
  18. Guerry P., LeBlanc D. J., Falkow S. 1973; General method for the isolation of plasmid deoxyribonucleic acid. Journal of Bacteriology 116:1064–1066
    [Google Scholar]
  19. Holmes D. S., Quigley N. 1981; A rapid boiling method for preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  20. Keil H., Williams P. A. 1985; A new class of TOL plasmid deletion mutants in Pseudomonas putida MT15 and their reversion by tandem gene amplification. Journal of General Microbiology 131:1023–1033
    [Google Scholar]
  21. Keil H., Lebens M. R., Williams P. A. 1985a; TOL plasmid pWW15 contains two non-homologous catechol 2,3-oxygenase genes independently regulated. Journal of Bacteriology 163:248–255
    [Google Scholar]
  22. Keil H., Keil S., Pickup R. W., Williams P. A. 1985b; The complete meta pathway operon of the toluene/xylene catabolic pathway cloned from TOL plasmid pWW53. Journal of Bacteriology 164:887–895
    [Google Scholar]
  23. McCormick M., Wishart W., Ohtsubo H., Heffron F., Ohtsubo E. 1981; Plasmid cointegrates and their resolution mediated by transposon Tn3 mutants. Gene 15:103–118
    [Google Scholar]
  24. McDonnell M. W., Simon M. N., Studier F. W. 1977; Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. Journal of Molecular Biology 110:119–146
    [Google Scholar]
  25. Meulien P., Broda P. 1982; Identification of chromosomally integrated TOL DNA in cured derivatives of Pseudomonas putida PaW1. Journal of Bacteriology 152:911–914
    [Google Scholar]
  26. Murray K., Duggleby C. J., Sala-Trepat J. M., Williams P. A. 1972; The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. European Journal of Biochemistry 28:301–310
    [Google Scholar]
  27. Nakazawa T., Inouye S., Nakazawa A. 1980; Physical and functional mapping of RP4-TOL plasmid recombinants: analysis of insertion and deletion mutants. Journal of Bacteriology 144:222–231
    [Google Scholar]
  28. Shamsuzzaman K. M., Barnsley E. A. 1974; The regulation of naphthalene oxygenase in Pseudomonads. Journal of General Microbiology 83:165–170
    [Google Scholar]
  29. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–571
    [Google Scholar]
  30. Wheatcroft R., Williams P. A. 1981; Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. Journal of General Microbiology 124:433–437
    [Google Scholar]
  31. Williams P. A., Catterall F. A., Murray K. 1975; Metabolism of naphthalene, salicylate and benzoate by Pseudomonas PG: regulation of tangential pathways. Journal of Bacteriology 124:679–685
    [Google Scholar]
  32. Williams P. A., Cane P. A., Jeenes D. J., Pickup R. W. 1983; Correlation between spontaneous phenotypic changes in Pseudomonas strains with changes in the structure of catabolic plasmids: experience with TOL plasmids. In Basic Biology of New Developments in Biotechnology pp 519–552 Edited by Hollaender A., Laskin A. I., Rogers P. New York and London: Plenum Press;
    [Google Scholar]
  33. Worsey M. J., Franklin F. C. H., Williams P. A. 1978; Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWW0) from Pseudomonas putida mt-2. Journal of Bacteriology 134:757–764
    [Google Scholar]
  34. Yen M., Gunsalus I. C. 1982; Plasmid gene organisation: naphthalene/salicylate oxidation. Proceedings of the National Academy of Sciences of the United States of America 79:874–878
    [Google Scholar]
  35. Yen M., Gunsalus I. C. 1985; Regulation of naphthalene catabolic genes of plasmid NAH7. Journal of Bacteriology 162:1008–1013
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-10-2919
Loading
/content/journal/micro/10.1099/00221287-132-10-2919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error