Transposon Mutagenesis of Pseudomonas solanacearum: Isolation of Tn-Induced Avirulent Mutants Free

Abstract

Summary: Transposon mutagenesis in a tomato isolate of (strain Kourou) is reported, using Tn and Tn inserted in suicide conjugative plasmids. Whereas Tn integrates at high frequency in a particular site of the the genome, Tn appears to transpose much more randomly, allowing isolation of auxotrophic mutants with a frequency of 0.35%. The mutants showed a wide range of nutritional requirements. Following Tn mutagenesis, screening of 8250 clones on axenic tomato seedlings led to the isolation of 12 avirulent mutants. Southern blot analysis revealed that, for avirulent mutants, insertion of Tn occurred in at least 10 different RI restriction fragments. Additional independent insertions of IS were also detected in four of these mutants. For each mutant, transformation experiments demonstrated that the Tn-encoded kanamycin resistance and the avirulent phenotype are linked. Based on their ability or inability to induce a collapse of tobacco leaf parenchyma, and on the timing of reaction of the plant, avirulent mutants have been divided in to two and possibly three groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-9-2449
1985-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/09/mic-131-9-2449.html?itemId=/content/journal/micro/10.1099/00221287-131-9-2449&mimeType=html&fmt=ahah

References

  1. Anderson D.M., Mills D. 1984; The use of transposon mutagenesis in the isolation of nutri tional and virulence mutants in two pathovars of Pseudomonas syringae. Phytopathology 75104–108
    [Google Scholar]
  2. Berg D.E., Berg C. 1983; The prokaryotic transposable element Tn5. Bio/technology l:417–435
    [Google Scholar]
  3. Boucher C., Message B., Dedieu D., Zischek C. 1981; Use of P-1 incompatibility group plasmids to introduce transposons into Pseudomonas solana cearum. Phytopathology 71:639–642
    [Google Scholar]
  4. Buddenhagen I., Kelman A. 1964; Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phyto pathology 2203–230
    [Google Scholar]
  5. De Bruhn F.s., Lupski J.R. 1984; The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids-a review. Gene 21:131–149
    [Google Scholar]
  6. Caruso M., Shapiro J. A. 1982; Interaction of Tn7 and temperate phage Fl 16L of Pseudomonas aeruginosa. Molecular and General Genetics ll8292–298
    [Google Scholar]
  7. Dahlbeck D., Stall R. E. 1979; Mutations for change of race in cultures of Xanthomonas vesicatoria. Phytopathology 69:634–636
    [Google Scholar]
  8. Daniels M. J., Barber C. E., Turner P. C., Cleary w. G., Sawczyc M. K. 1984; Isolation of mutants of Xanthomonas campestris pv. campestris showing altered pathogenicity. Journal of General Microbiology 130:2447–2455
    [Google Scholar]
  9. Drigués P., Demery-Lafforgue D., Trigalet A., Dupin P., Samain D., Asselineau J. 1985; Comparative studies of lipopolysaccharide and exopolysaccharide from a virulent strain of Pseudo monos solanacearum and from three avirulent mu tants. Journal of Bacteriology 162:504–509
    [Google Scholar]
  10. Dudman W. F. 1959; Comparison of slime from tomato and banana strains of Pseudomonas solana cearum. Nature, London 184:1969–1970
    [Google Scholar]
  11. Ely B. 1982; Transposition of Tn7 occurs at a single site on the Caulobacter crescentus chromosome. Journal of Bacteriology 151:1056–1058
    [Google Scholar]
  12. Granada G. A., Sequeira L. 1975; A hypersensitive reaction induced in tobacco leaves by a compatible (race I) isolate of Pseudomonas solana cearum. Phytopathology 65:731–733
    [Google Scholar]
  13. Hauer B., Shapiro J. 1984; Control of Tn7 transposition. Molecular and General Genetics 194:149–158
    [Google Scholar]
  14. Hendrick C. A., Sequeira L. 1984; Lipopolysac charide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Applied and Environmen tal Microbiology 48:94–101
    [Google Scholar]
  15. Husain A., Kelman A. 1958; The role of pectic and cellulolytic enzymes in pathogenesis by Pseudo monos solanacearum. Phytopathology 48:377–386
    [Google Scholar]
  16. Kelman A. 1954; The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695
    [Google Scholar]
  17. Kelman A., Cowling E. B. 1965; Cellulase of Pseudomonas solanacearum in relation to pathogene sis. Phytopathology 55:148–155
    [Google Scholar]
  18. Le T., Leccas D., Boucher C. 1978; Transformation of Pseudomonas solanacearum strain K60. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria819–822 Angers: INRA;
    [Google Scholar]
  19. Lichtenstein C., Brenner s. 1982; Unique insertion site of Tn7 in the E. coli chromosome. Nature, London 297:601–603
    [Google Scholar]
  20. Lozano J. C., Sequeira L. 1970; Differentiation of Pseudomonas solanacearum by a leaf infiltration technique. Phytopathology 70:833–838
    [Google Scholar]
  21. Maniatis T., Fritsch E., Sambrook J. 1982 Molecular Cloning, A Laboratory Manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Message B., Boistard P., Pitrat M., Schmit J., Boucher C. 1978; A new class of fluidal avirulent mutants of Pseudomonas solanacearum unable to induce a hypersensitive reaction. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria823–833 Angers: INRA;
    [Google Scholar]
  23. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Phelps R. H., Sequeira L. 1967; Synthesis of indol-acetic acid by cell free systems from virulent and avirulent strains of Pseudomonas solanacearum. Phytopathology 51:1182–1190
    [Google Scholar]
  25. Rosenberg C., Boistard P., Denarie J., Casse-Delbart F. 1981; Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Molecular and General Genetics 184:326–333
    [Google Scholar]
  26. Rosenberg C., Casse-Delbart F., Dusha I., David M., Boucher C. l982; Megaplasmids in the plant associated Rhizobium meliloti and Pseudomonas solanacearum. Journal of Bacteriology 150:402–406
    [Google Scholar]
  27. Sato M., Staskawicz B., Panopoulos N., Peters S., Honma M. 1981; A host dependent hybrid plasmid suitable as a suicidal carrier for transposable elements. Plasmid 6:325–331
    [Google Scholar]
  28. Simon R., Priefer u., Puhler A. 1983; A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram nega tive bacteria. Bio/technology l:784–790
    [Google Scholar]
  29. Staskawicz B., Dahlbeck D., Miller J., Damm D. 1983; Molecular analysis of virulence genes in Pseudomonas solanacearum. In Molecular Genetics of Bacteria-Plant Interactions345–352 Piihler A. Berlin & Heidelberg; Springer Verlag:
    [Google Scholar]
  30. Thomson J. A., Hendson M., Magnes R. M. 1981; Mutagenesis by insertion of drug resistance transposon Tn7 into a Vibrio species. Journal of Bacteriology 148:374–378
    [Google Scholar]
  31. Turner P., Barber C., Daniels M. 1984; Behaviour of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris. Molecular and General Genetics 195:101–107
    [Google Scholar]
  32. Whatley M., Hunter N., Cantrell M. A., Hendrick C., Keegstra K., Sequeira L. 1980; Lipopolysaccharide composition of the wilt patho gen, Pseudomonas solanacearum: correlation with the hypersensitive response in tobacco. Plant Physiology 65:557–559
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-9-2449
Loading
/content/journal/micro/10.1099/00221287-131-9-2449
Loading

Data & Media loading...

Most cited Most Cited RSS feed