1887

Abstract

Summary: In contrast to some other strains, 1001 gave rise, upon UV irradiation, to mutants displaying a ‘rough colony’ morphology associated with a permanent alteration in morphogenesis which determined growth of the cells mostly as pseudohyphae. One of these mutants, 1001FR, could form sectored (rough/smooth) colonies spontaneously, and with increasing frequency treatment with mild UV doses (32-64 μ;J mm). Rough sectors corresponded to stable ‘rough-filamentous’ strains which never segregated smooth strains. On the other hand, smooth sectors consisted mainly of yeast cells which could occasionally revert to a rough-filamentous phenotype. We suggest that 1001 is heterozygous for some gene involved in the control of morphogenesis, and that the described mutants should be of help in the characterization of the genetic control of dimorphism in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-8-2107
1985-08-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/8/mic-131-8-2107.html?itemId=/content/journal/micro/10.1099/00221287-131-8-2107&mimeType=html&fmt=ahah

References

  1. Chattaway F. W., Holmes M. R., Barlow A. J. E. 1968; Cell wall composition of the mycelial and blastospore forms of Candida albicans . Journal of General Microbiology 51:367–376
    [Google Scholar]
  2. Chattaway F. W., Shenolikar S., O'Reilly J., Barlow A. J. E. 1976; Changes in the cell surface of the dimorphic forms of Candida albicans by treatment with hydrolytic enzymes. Journal of General Microbiology 95:335–347
    [Google Scholar]
  3. Chiew Y. Y., Shepherd M. G., Sullivan P. A. 1980; Regulation of chitin synthesis during germ-tube formation in Candida albicans . Archives of Microbiology 125:97–104
    [Google Scholar]
  4. Crandall M. 1983; UV-induced mitotic co-segregation of genetic markers in Candida albicans: evidence of linkage. Current Genetics 7:167–173
    [Google Scholar]
  5. Gow N. A. R., Gooday G. W. 1984; A model for the germ tube formation and mycelial growth form of Candida albicans . Sabouraudia 22:137–143
    [Google Scholar]
  6. Hazen K. C., Cutler J. E. 1979; Autoregulation of germ tube formation by Candida albicans . Infection and Immunity 24:661–666
    [Google Scholar]
  7. Hazen K. C., Cutler J. E. 1983a; Effect of cobalt and morphogenic autoregulatory substance (MARS) on morphogenesis of Candida albicans . Experimental Mycology 7:182–187
    [Google Scholar]
  8. Hazen K. C., Cutler J. E. 1983b; Isolation and purification of morphogenic autoregulatory substance produced by Candida albicans . Journal of Biochemistry 94:777–783
    [Google Scholar]
  9. Ireland R., Sarachek A. 1968; A unique minute-rough colonial variant of Candida albicans . Mycopathologia 35:346–360
    [Google Scholar]
  10. Ireland R., Sarachek A. 1969a; Induction and selection of the minute-rough (MR) colonial variant of Candida albicans . Mycopathologia 37:377–392
    [Google Scholar]
  11. Ireland R., Sarachek A. 1969b; Reversion of the MR variant of Candida albicans . Canadian Journal of Microbiology 15:1051–1054
    [Google Scholar]
  12. Kakar S. N., Partridge R. M., Magee P. T. 1983; A genetic analysis of Candida albicans: isolation of a wide variety of auxotrophs and demonstration of linkage and complementation. Genetics 104:241–255
    [Google Scholar]
  13. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans . Sabouraudia 13:148–153
    [Google Scholar]
  14. Manning M., Mitchell T. G. 1980a; Strain variation and mycelial phase Candida albicans in low-sulfate, synthetic medium. Journal of Bacteriology 142:714–719
    [Google Scholar]
  15. Manning M., Mitchell T. G. 1980b; Morphogenesis of Candida albicans and cytoplasmic proteins associated with differences in morphology, strain or temperature. Journal of Bacteriology 144:258–273
    [Google Scholar]
  16. Manning M., Mitchell T. G. 1980c; Analysis of cytoplasmic antigens of the yeast and mycelial phases of Candida albicans by two-dimensional electrophoresis. Infection and Immunity 30:484–495
    [Google Scholar]
  17. Mattia E., Carruba G., Angiolella L., Cassone A. 1982; Induction of germ tube formation by N-acetyl-d-glucosamine in Candida albicans. Uptake of inducer and germinative response. Journal of Bacteriology 152:555–562
    [Google Scholar]
  18. Mitchell L. H., Soll D. R. 1979; Commitment to germ tube or bud formation during release from stationary phase in Candida albicans . Experimental Cell Research 120:167–179
    [Google Scholar]
  19. Nickerson W. J. 1963; Symposium on biochemical bases of morphogenesis in fungi. Bacteriological Reviews 27:305–325
    [Google Scholar]
  20. Nickerson W. J., Chung C. W. 1954; Genetic block in the cellular division mechanism of a morphological mutant of a yeast. American Journal of Botany 41:114–120
    [Google Scholar]
  21. Odds F. C. 1979 Candida and Candidosis Leicester: Leicester University Press;
    [Google Scholar]
  22. Olaiya A. F., Sogin S. J. 1979; Ploidy determination of Candida albicans . Journal of Bacteriology 140:1043–1049
    [Google Scholar]
  23. Poulter R., Jeffery K., Hubbard M. H., Shepherd M. G., Sullivan P. A. 1981; Parasexual genetic analysis of Candida albicans by spheroplast fusion. Journal of Bacteriology 146:833–840
    [Google Scholar]
  24. Riggsby W. S., Torres-Bauza L. J., Willis J. W., Townes T. M. 1982; DNA content, kinetic complexity and the ploidy question in Candida albicans . Molecular and Cellular Biology 2:853–862
    [Google Scholar]
  25. Sarachek A. 1983; Recombinogenic activity of nalidixic acid for artificial hybrids but not for natural strains of Candida albicans: evidence for the monoploidy of natural strains. Zeitschrift für allgemeine Mikrobiologie 23:385–391
    [Google Scholar]
  26. Silva-Hutner M., Cooper B. H. 1980; Yeasts of medical importance. In Manual of Clinical Microbiology 3rd edn, pp 562–576 Edited by Lennette E. H., Balows A., Hausler W. J. Jr, Truant J. P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Soll D. R., Mitchell L. H. 1983; Filament ring formation in the dimorphic yeast Candida albicans . Journal of Cell Biology 96:486–493
    [Google Scholar]
  28. Sullivan P. A., Chiew Y. Y., Molloy C., Templeton M. D., Shepherd M. G. 1983; An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Canadian Journal of Microbiology 29:1514–1525
    [Google Scholar]
  29. Svedsen P. J., Axelsen N. H. 1972; A modified antigen–antibody crossed electrophoresis characterizing the specificity and titre of human precipitins against Candida albicans . Journal of Immunological Methods 1:169–176
    [Google Scholar]
  30. Vogel R. A., Sponcler R. S. 1970; The study and significance of colony dissociation in Candida albicans . Sabouraudia 7:273–278
    [Google Scholar]
  31. Ward J. M., Nickerson W. J. 1958; Respiratory metabolism of normal and divisionless strains of Candida albicans . Journal of General Physiology 41:703–724
    [Google Scholar]
  32. Whelan W. L., Magee P. T. 1981; Natural heterozygosity in Candida albicans . Journal of Bacteriology 145:896–903
    [Google Scholar]
  33. Whelan W. L., Soll D. R. 1982; Mitotic recombination in Candida albicans: recessive lethal alleles linked to a gene required for methionine synthesis. Molecular and General Genetics 187:477–485
    [Google Scholar]
  34. Whelan W. L., Partridge R. M., Magee P. T. 1980; Heterozygosity and segregation in Candida albicans . Molecular and General Genetics 180:107–113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-8-2107
Loading
/content/journal/micro/10.1099/00221287-131-8-2107
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error