1887

Abstract

Summary: We have compared the effect of diphenylamine (DPA) on the pigment composition of f. sp. grown in photoheterotrophic culture with the previously reported effect of nitrate. It was demonstrated that the effect of nitrate is due to the nitrite which is produced during denitrification. Both nitrite and DPA caused a decrease in the synthesis of spheroidene, and the accumulation of more-reduced precursors not normally seen. Nitrate (effectively nitrite) caused a decrease in the amount of bacteriochlorophyll, and the reaction centre from denitrifying cells did not contain the 28 kDal polypeptide (RC-H) subunit. These effects did not occur over a range of DPA additions (4 to 8 μ;g ml) to cells growing in the absence of nitrate. Denitrifying cells also had 40-50% lower activity of δ-aminolaevulinic acid synthase than those grown with or without DPA. Both nitrite and DPA treatments resulted in the loss of the B870 light-harvesting complex because of a failure to synthesize its 12 kDal polypeptide subunit.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-8-1951
1985-08-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/8/mic-131-8-1951.html?itemId=/content/journal/micro/10.1099/00221287-131-8-1951&mimeType=html&fmt=ahah

References

  1. Barret J., Hunter C. N., Jones O. T. G. 1978; Properties of a cytochrome c enriched light particulate fraction isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides . Biochemical Journal 174:267–275
    [Google Scholar]
  2. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:83–85
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  4. Broglie R. M., Hunter C. N., Delepelaire P., Niederman R. A., Chua N. -H., Clayton R. K. 1980; Isolation and characterization of the pigment–protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proceedings of the National Academy of Sciences of the United States of America 77:87–91
    [Google Scholar]
  5. Chory J., Kaplan S. 1983; Light-dependent regulation of the synthesis of soluble and intracytoplasmic membrane proteins of Rhodopseudomonas sphaeroides . Journal of Bacteriology 153:465–474
    [Google Scholar]
  6. Codgell J. R., Parson W. W., Kerr M. A. 1976; The type, amount, location and energy transfer properties of the carotenoid in reaction centres in Rhodopseudomonas sphaeroides . Biochimica et biophysica acta 540:83–93
    [Google Scholar]
  7. Cohen-Bazire G., Stanier R. Y. 1958; Inhibition of carotenoid synthesis in photosynthetic bacteria. Nature, London 181:250–252
    [Google Scholar]
  8. Cohen-Bazire G., Sistrøm W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by nonsulfur purple bacteria. Journal of Cellular and Comparative Physiology 49:25–68
    [Google Scholar]
  9. Davies B. H. 1965 In Chemistry and Biochemistry of Plant Pigments pp 489–532 Edited by Goodwin T. W. London, New York: Academic Press;
    [Google Scholar]
  10. Glazer A. N. 1983; Comparative biochemistry of photosynthetic light-harvesting systems. Annual Review of Biochemistry 52:125–151
    [Google Scholar]
  11. Goodwin T. W. 1956; The carotenoids of photosynthetic bacteria. II. The carotenoids of a number of non-sulfur purple photosynthetic bacteria (Athiorhodaceae). Archiv für Mikrobiologie 24:313–322
    [Google Scholar]
  12. Goodwin T. W. 1980; Photosynthetic bacteria. In The Biochemistry of Carotenoids vol 1 pp 321–349 London, New York: Chapman & Hall;
    [Google Scholar]
  13. Goodwin T. W., Osman H. G. 1953; Studies in carotenogenesis. 9. General cultural conditions controlling carotenoid (spirilloxanthin) synthesis in the photosynthetic bacterium Rhodospirillum rubrum . Biochemical Journal 53:541–546
    [Google Scholar]
  14. Hillmer P., Gest H. 1977; H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata . Journal of Bacteriology 129:724–731
    [Google Scholar]
  15. Jolchine G., Reiss-Husson F. 1974; Comparative studies of two reaction centre preparations from Rhodopseudomonas sphaeroides Y. FEBS Letters 40:5–8
    [Google Scholar]
  16. Jones O. T. G. 1978; Biosynthesis of porphyrins, hemes and chlorophylls. In The Photosynthetic Bacteria pp 751–777 Edited by Clayton R. K., Sistrøm W. R. New York & London: Plenum Press;
    [Google Scholar]
  17. Kelley B. C., Dunstan R. H., Nicholas D. J. D. 1982; Respiratory dependent nitrogenase activity in the dark in the denitrifying phototrophic bacterium Rhodopseudomonas sphaeroides f. sp. denitrificans . FEMS Microbiology Letters 13:253–258
    [Google Scholar]
  18. Laemmli U. K., Favre M. 1973; Maturation of the head of bacteriophage T4. Journal of Molecular Biology 80:575–579
    [Google Scholar]
  19. Lascelles J., Hatch T. P. 1969; Bacteriochlorophyll and heme synthesis in Rhodopseudomonas sphaeroides; possible role of heme in regulation of the branched biosynthetic pathway. Journal of Bacteriology 98:712–720
    [Google Scholar]
  20. Monger T. G., Parson W. W. 1977; Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus. Biochimica et biophysica acta 460:393–407
    [Google Scholar]
  21. Michalski W. P., Nicholas D. J. D. 1984; The adaptation of Rhodopseudomonas sphaeroides f. sp. denitrificans for growth under denitrifying conditions. Journal of General Microbiology 130:155–165
    [Google Scholar]
  22. Nicholas D. J. D., Nason A. 1954; Molybdenum as an electron carrier in nitrate reductase action. Archives of Biochemistry and Biophysics 51:311–312
    [Google Scholar]
  23. Okamura M. Y., Steiner L. A., Feher G. 1974; Characterization of reaction centers from photosynthetic bateria. I. Subunit structure of the protein mediating the primary photochemistry in Rhodopseudomonas sphaeroides R-26. Biochemistry 13:1394–1403
    [Google Scholar]
  24. Satoh T. 1981; Soluble dissimilatory nitrate reductase containing cytochrome c from a photodenitrifier Rhodopseudomonas sphaeroides forma sp. denitrificans . Plant and Cell Physiology 22:443–452
    [Google Scholar]
  25. Satoh T., Hoshino Y., Kitamura M. 1976; Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a sub-species of Rhodopseudomonas sphaeroides . Archives of Microbiology 108:265–269
    [Google Scholar]
  26. Segen B. J., Gibson K. D. 1971; Deficiencies of chromatophore proteins in some mutants of Rhodopseudomonas sphaeroides with altered carotenoids. Journal of Bacteriology 105:701–709
    [Google Scholar]
  27. Sistrøm W. R., Griffiths M., Stanier R. Y. 1956; The biology of a photosynthetic bacterium which lacks coloured carotenoids. Journal of Cellular and Comparative Physiology 4:473–515
    [Google Scholar]
  28. Thornber J. P., Trosper T. L., Strouse C. E. 1978; Bacteriochlorophyll in vivo. Relationship of spectral forms to specific membrane components. In The Photosynthetic Bacteria pp 133–160 Edited by Clayton R. K., Sistrøm W. R. New York & London: Plenum Press;
    [Google Scholar]
  29. Yubisui T., Yoneyama Y. 1972; δ-Aminolevulinic acid synthetase of Rhodopseudomonas sphaeroides, purification and properties of the enzyme. Archives of Biochemistry and Biophysics 150:77–85
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-8-1951
Loading
/content/journal/micro/10.1099/00221287-131-8-1951
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error