1887

Abstract

Summary: An extracellular cellobiose dehydrogenase has been purified from the culture filtrates of . The purified enzyme is homogeneous as determined by disc gel electrophoresis, with and without SDS, and by analytical isoelectric focusing in polyacrylamide gel. The enzyme is a single-subunit glycoprotein containing 8·9% total carbohydrate; its is 63000-64500, and its isoelectric point 5·18. The enzyme oxidized cellobiose, other cellodextrins and lactose whereas other disaccharides tested were not utilized as substrates. The rate of cellodextrin oxidation decreased and the increased with increasing degree of polymerization of the substrate. Cytochrome was reduced though at a considerably lower rate than 2,6-dichlorophenolindophenol. The natural electron acceptor for the enzyme has not been identified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-8-1917
1985-08-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/8/mic-131-8-1917.html?itemId=/content/journal/micro/10.1099/00221287-131-8-1917&mimeType=html&fmt=ahah

References

  1. Alexander J. K. 1961; Characteristics of cellobiose phosphorylase. Journal of Bacteriology 81:903–910
    [Google Scholar]
  2. Alexander J. K. 1968; Purification and specificity of cellobiose phosphorylase from Clostridium thermocellum . Journal of Biological Chemistry 243:2899–2904
    [Google Scholar]
  3. Andrews P. 1964; Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochemical Journal 91:222–233
    [Google Scholar]
  4. Ayers A. R., Ayers S. B., Eriksson K. E. 1978; Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum . European Journal of Biochemistry 90:171–181
    [Google Scholar]
  5. Bergmeyer H. U. 1974 Methods of Enzymatic Analysis vol 1 pp 457–458 New York: Academic Press;
    [Google Scholar]
  6. Coudray M. R., Canevascini G., Meier H. 1982; Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile . Biochemical Journal 203:217–284
    [Google Scholar]
  7. Dekker R. F. H. 1980; Induction and characterization of a cellobiose dehydrogenase produced by a species of Monilia . Journal of General Microbiology 120:309–316
    [Google Scholar]
  8. Eriksson K. E. 1978; Enzyme mechanism involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum . Biotechnology and Bioengineering 20:317–332
    [Google Scholar]
  9. Goodwin T. W., Morton R. A. 1946; The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochemical Journal 40:628–640
    [Google Scholar]
  10. Gum E. K. Jr, Brown R. D. Jr 1976; Structural characterization of a glycoprotein cellulase, 1,4-β-d-glucan cellobiohydrolase C from Trichoderma viride . Biochimica et biophysica acta 446:371–386
    [Google Scholar]
  11. Hedrick J. L., Smith A. J. 1968; Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Archives of Biochemistry and Biophysics 126:155–164
    [Google Scholar]
  12. Hurst P. L., Nielsen J., Sullivan P. A., Shepherd M. G. 1977; Purification and properties of a cellulase from Aspergillus niger . Biochemical Journal 165:33–41
    [Google Scholar]
  13. Husain M., Sadana J. C. 1974; Nitrite reductase from A. fischeri: amino acid composition and hydrodynamic properties. Archives of Biochemistry and Biophysics 163:21–28
    [Google Scholar]
  14. Nelson N. 1944; A photometric adaption of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153:375–380
    [Google Scholar]
  15. Patil R. V., Sadana J. C. 1984; The purification and properties of 1,4-β-d-glucan cellobiohydrolase from Sclerotium rolfsii: substrate specificity and mode of action. Canadian Journal of Biochemistry and Cell Biology 62:920–926
    [Google Scholar]
  16. Peel J. L. 1972; The use of electron acceptors, donors and carriers. Methods in Microbiology 6B:1–24
    [Google Scholar]
  17. Philips A. H., Langdon R. G. 1962; Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. Journal of Biological Chemistry 237:2652–2660
    [Google Scholar]
  18. Sadana J. C., Patil R. V. 1985; Synergism between enzymes of Sclerotium rolfsii involved in the solubilization of crystalline cellulose. Carbohydrate Research 139: (in the Press)
    [Google Scholar]
  19. Sadana J. C., Shewale J. G., Patil R. V. 1983; β-d-Glucosidases of Sclerotium rolfsii: substrate specificity and mode of action. Carbohydrate Research 118:205–214
    [Google Scholar]
  20. Sadana J. C., Lahcke A. H., Patil R. V. 1984; Endo-1,4-β-d-glucanases from Sclerotium rolfsii. Purification, substrate specificity, and mode of action. Carbohydrate Research 133:297–312
    [Google Scholar]
  21. Sheth K., Alexander J. K. 1967; Cellodextrin phosphorylase from Clostridum thermocellum . Biochimica et biophysica acta 148:808–810
    [Google Scholar]
  22. Shewale J. G., Sadana J. C. 1978; Cellulase and β-glucosidase production by a basidiomycete species. Canadian Journal of Microbiology 24:1204–1216
    [Google Scholar]
  23. Shewale J. G., Sadana J. C. 1981; Purification, characterization, and properties of β-glucosidase enzymes from Sclerotium rolfsii . Archives of Biochemistry and Biophysics 207:185–196
    [Google Scholar]
  24. Somogyi M. 1952; Notes on sugar determination. Journal of Biological Chemistry 195:19–23
    [Google Scholar]
  25. Spackman D. H., Stein W. H., Moore S. 1958; Automatic recording apparatus for use in the chromatography of amino acids. Analytical Chemistry 30:1190–1206
    [Google Scholar]
  26. Updegraff D. M. 1969; Semimicro determination of cellulase in biological materials. Analytical Biochemistry 32:420–424
    [Google Scholar]
  27. Vaheri M. P. 1982; Oxidation as a part of degradation of crystalline cellulose by Trichoderma reesei . Journal of Biochemistry 4:356–363
    [Google Scholar]
  28. Vaheri M. P. 1983; Formation of oxidative activity for the initial degradation of crystalline cellulose by Trichoderma reesei . Journal of Applied Biochemistry 5:66–74
    [Google Scholar]
  29. Walborg E. F. Jr, Cobb B. F., III, Adams-mayne M., Ward D. N. 1963; Semiautomatic analysis of glucosamine and galactosamine in protein hydrolyzates. Analytical Biochemistry 6:367–373
    [Google Scholar]
  30. Westermark U., Eriksson K. E. 1974; Cellobiose: quinone oxidoreductase, a new wood degrading enzyme from white-rot fungi. Acta chemica scandinavica B28:209–214
    [Google Scholar]
  31. Westermark U., Eriksson K. E. 1975; Purification, properties of cellobiose: quinone oxidoreductase from Sporotrichum pulverulentum . Acta chemica scandinavica B29:419–424
    [Google Scholar]
  32. Wood T. M., McCrae S. I. 1979; Synergism between enzymes involved in the solubilization of native cellulose. Advances in Chemistry Series no 181:181–209
    [Google Scholar]
  33. Wood T. M., McCrae S. I., Macfarlane C. C. 1980; The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochemical Journal 189:451–465
    [Google Scholar]
  34. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. 1969; Glycoprotein staining following electrophoresis on acrylamide gels. Analytical Biochemistry 30:148–152
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-8-1917
Loading
/content/journal/micro/10.1099/00221287-131-8-1917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error