1887

Abstract

Summary: The fission yeast has been shown to produce four separate pyridine nucleotide-linked glycerol dehydrogenases (or triose reductases), distinguished by differences in their coenzyme specificity (NAD or NADP) and oxidation product (dihydroxyacetone or glyceraldehyde). Evidence for four separate activities was obtained by heat inactivation studies, comparison of cells grown under different conditions, and separation and partial purification of the enzymes. One enzyme, a glycerol: NAD 2-oxidoreductase is repressed by glucose but not induced by glycerol and appears to function primarily in glycerol catabolism. The second, a glycerol: NADP 2-oxidoreductase is stimulated by growth on glucose and appears to function as a dihydroxyacetone reductase involved in glycerol synthesis. The third has the properties of a glycerol: NADPT oxidoreductase, while the fourth is, in fact, alcohol dehydrogenase (alcohol: NAD oxidoreductase) which possesses weak activity as a glycerol: NAD 1-oxidoreductase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-7-1571
1985-07-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/7/mic-131-7-1571.html?itemId=/content/journal/micro/10.1099/00221287-131-7-1571&mimeType=html&fmt=ahah

References

  1. Attwood M. A., Doughty C. C. 1974; Purification and properties of calf-liver aldose reductase. Biochimica et biophysica acta 370:358–368
    [Google Scholar]
  2. Babel W., Hofmann K. H. 1982; The relation between the assimilation of methanol and glycerol in yeasts. Archives of Microbiology 132:179–184
    [Google Scholar]
  3. Baliga B. S., Bhatnagar G. M., Jagannathan V. 1962; Triphosphopyridine nucleotide-specific glycerol dehydrogenase from Aspergillus niger . Biochimica et biophysica acta 58:384–385
    [Google Scholar]
  4. Barron E. S. G., Levine S. 1952; Oxidation of alcohols by yeast alcohol dehydrogenase and by the living cell. The thiol groups of the enzyme. Archives of Biochemistry and Biophysics 41:175–187
    [Google Scholar]
  5. Ben-Amotz A., Avron M. 1973; The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva . Plant Physiology 51:875–878
    [Google Scholar]
  6. Ben-Amotz A., Avron M. 1974; Isolation, characterization and partial purification of a reduced nicotinamide adenine dinucleotide phosphate-dependent dihydroxyacetone reductase from the halophilic alga Dunaliella parva . Plant Physiology 53:628–631
    [Google Scholar]
  7. Bergmeyer H. U., Holz G., Kauder E. M., Möllering H., Wieland O. 1961; Kristallisierte Glycerokinase aus Candida mycoderma . Biochemische Zeitschrift 333:471–480
    [Google Scholar]
  8. Bosron,. W. F. & Prairie R. L. 1972; Triphosphopyridine nucleotide-linked aldehyde reductase. I. Purification and properties of the enzyme from pig kidney cortex. Journal of Biological Chemistry 247:4480–4485
    [Google Scholar]
  9. Brown A. D. 1978; Compatible solutes and extreme water stress in eukaryotic micro-organisms. Advances in Microbial Physiology 17:181–242
    [Google Scholar]
  10. Davis B. J. 1964; Disc electrophoresis. II. Method and applications to human serum proteins. Annals of the New York Academy of Sciences 121:404–427
    [Google Scholar]
  11. Dutler H., van der Baan J. L., Hochuli E., Kis Z., Taylor K. E., Prelog V. 1977; Dihydroxyacetone reductase from Mucor javanicus. 1. Isolation and properties. European Journal of Biochemistry 75:423–432
    [Google Scholar]
  12. van Eys J., Kaplan N. O. 1957; Yeast alcohol dehydrogenase. III. Relation of alcohol structure to activity. Journal of the American Chemical Society 79:2782–2786
    [Google Scholar]
  13. Feraudi M., Schmolz G. 1976; Reductive metabolism of d-glyceraldehyde, l-glyceraldehyde and dihydroxyacetone in rat liver. Identification of alcohol dehydrogenase as the main responsible enzyme. International Journal of Biochemistry 7:461–466
    [Google Scholar]
  14. Gancedo C., Gancedo J. M., Sols A. 1968; Glycerol metabolism in yeasts: pathways of utilization and production. European Journal of Biochemistry 5:165–172
    [Google Scholar]
  15. Koch A. L., Putnam S. L. 1971; Sensitive biuret method for determination of protein in an impure system such as whole bacteria. Analytical Biochemistry 44:239–245
    [Google Scholar]
  16. Kormann A. W., Hurst R. O., Flynn T. G. 1972; Purification and properties of an NADP+-dependent glycerol dehydrogenase from rabbit skeletal muscle. Biochimica et biophysica acta 258:40–55
    [Google Scholar]
  17. Lin E. C. C. 1976; Glycerol dissimilation and its regulation in bacteria. Annual Review of Microbiology 30:535–578
    [Google Scholar]
  18. Marshall J. H., May J. W., Sloan J. 1985; Purification and properties of glycerol: NAD+ 2-oxidoreductase (glycerol dehydrogenase) from Schizosaccharomyces pombe . Journal of General Microbiology 131:1581–1588
    [Google Scholar]
  19. May J. W., Sloan J. 1981; Glycerol utilization by Schizosaccharomyces pombe: dehydrogenation as the initial step. Journal of General Microbiology 123:183–185
    [Google Scholar]
  20. May J. W., Marshall J. H., Sloan J. 1982; Glycerol utilization by Schizosaccharomyces pombe: phosphorylation of dihydroxyacetone by a specific kinase as the second step. Journal of General Microbiology 128:1763–1766
    [Google Scholar]
  21. McGregor W. G., Phillips J., Suelter C. H. 1974; Purification and kinetic characterization of a monovalent cation-activated glycerol dehydrogenase from Aerobacter aerogenes . Journal of Biological Chemistry 249:3132–3139
    [Google Scholar]
  22. Mitchison J. M. 1970; Physiological and cytological methods for Schizosaccharomyces pombe . Methods in Cell Physiology 4:131–165
    [Google Scholar]
  23. Ruch F. E., Lengeler J., Lin E. C. C. 1974; Regulation of glycerol catabolism in Klebsiella aerogenes . Journal of Bacteriology 119:50–56
    [Google Scholar]
  24. Scher B. M., Horecker B. L. 1966; Pentose metabolism in Candida. III. Triphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis . Archives of Biochemistry and Biophysics 116:117–128
    [Google Scholar]
  25. Schlanderer G., Dellweg H. 1974; Cyclic AMP and catabolite repression in yeasts. European Journal of Biochemistry 49:305–316
    [Google Scholar]
  26. Scopes R. K., Griffiths-Smith K., Millar D. G. 1981; Rapid purification of yeast alcohol dehydrogenase. Analytical Biochemistry 118:284–285
    [Google Scholar]
  27. Sheys G. H., Arnold W. J., Watson J. A., Hayashi J. A., Doughty C. C. 1971; Aldose reductase from Rhodotorula. I. Purification and properties. Journal of Biological Chemistry 246:3824–3827
    [Google Scholar]
  28. Sprague G. F., Cronan J. E. 1977; Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism. Journal of Bacteriology 129:1335–1342
    [Google Scholar]
  29. Tang C. T., Ruch F. E., Lin E. C. C. 1979; Purification and properties of a nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glycerol catabolism. Journal of Bacteriology 140:182–187
    [Google Scholar]
  30. Thorner J. W., Paulus H. 1971; Composition and subunit structure of glycerol kinase from Escherichia coli . Journal of Biological Chemistry 246:3885–3894
    [Google Scholar]
  31. Uwajima T., Akita H., Ito K., Mihara A., Aisaka K., Terada O. 1979; Some characteristics of a new enzyme “glycerol oxidase”. Agricultural and Biological Chemistry 43:2633–2634
    [Google Scholar]
  32. Viswanath-Reddy M., Pyle J. E., Howe H. B. 1978; Purification and properties of NADP+-linked glycerol dehydrogenase from Neurospora crassa . Journal of General Microbiology 107:289–296
    [Google Scholar]
  33. Waddell W. J. 1956; A simple ultraviolet spectro-photometric method for the determination of protein. Journal of Laboratory and Clinical Medicine 48:311–314
    [Google Scholar]
  34. Winer A. D. 1958; A note on the substrate specificity of horse liver alcohol dehydrogenase. Acta chentica scandinavica 12:1695–1696
    [Google Scholar]
  35. Wood W. I. 1976; Tables for the preparation of ammonium sulfate solutions. Analytical Biochemistry 73:250–257
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-7-1571
Loading
/content/journal/micro/10.1099/00221287-131-7-1571
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error