Skip to content
1887

Abstract

Entry of methotrexate (MTX) into the folate prototrophic bacterium was poorly inhibited by folate or its natural derivative folinic acid, suggesting that if MTX is transported via a folate transporter, the affinity of that transporter for MTX is higher than for folate. In the range of concentrations tested, MTX uptake was non-concentrative and decreased in ATP-depleted bacteria. When the external concentration of MTX was increased from 1 × 10 to 1 × 10 , uptake became saturated and was insensitive to ionophores. However when external MTX concentrations were increased to 1 × 10 , uptake increased linearly, and was inhibited by the ionophores carbonyl cyanide -chlorophenylhydrazone (CCCP) and valinomycin, suggesting that the process was energized by the protonmotive force (Δ) at this concentration. A model for MTX entry in . is proposed with respect to these results. The high level of resistance to MTX of the nonsense mutant cannot be entirely explained by a decrease in MTX uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-6-1273
1985-06-01
2025-11-12

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/micro/131/6/mic-131-6-1273.html?itemId=/content/journal/micro/10.1099/00221287-131-6-1273&mimeType=html&fmt=ahah

References

  1. Blakley R. L. 1969; Biochemistry and pharmacology of folate analogues. In The Biochemistry of Folic Acid and Related Pteridines464–517 New York: American Elsevier;
    [Google Scholar]
  2. Cooper B. A. 1970; Studies of [3H]folic acid uptake by Lactobacillus casei . Biochimica et biophysica acta 208:99–109
    [Google Scholar]
  3. Ephrussi-Taylor H., Sicard A. M., Kamen R. 1965; Genetic recombination in DNA-induced transformation of pneumococcus. I. The problem of relative efficiency of transforming factors. Genetics 51:455–475
    [Google Scholar]
  4. Friedman L. R., Ravin A. W. 1972; Genetic and biochemical properties of thymidine-dependent mutants of pneumococcus. Journal of Bacteriology 109:459–461
    [Google Scholar]
  5. Gasc A. M., Vacher J., Buckingham R., Sicard A. M. 1979; Characterization of an amber suppressor in pneumococcus. Molecular and General Genetics 172:295–301
    [Google Scholar]
  6. Goldman D., Lichenstein N. S., Oliverio V. T. 1968; Carrier-mediated transport of the folic acid analogue methotrexate in the LI210 leukemia cell. Journal of Biological Chemistry 243:5007–5017
    [Google Scholar]
  7. Harold F. M. 1977; Membranes and energy transduction in bacteria. Current Topics in Bioenergetics 6:83–149
    [Google Scholar]
  8. Henderson G. B., Huennekens F. M. 1974; Transport of folate compounds into Lactobacillus casei . Archives of Biochemistry and Biophysics 164:722–728
    [Google Scholar]
  9. Huennekens F. M., Vitols K. S., Henderson G. B. 1978; Transport of folate compounds in bacterial and mammalian cells. Advances in Enzymology 47:313–346
    [Google Scholar]
  10. Sicard A. M. 1964; A new synthetic medium for Diplococcus pneumoniae and its use for the study of reciprocal transformation at the amiA locus. Genetics 50:31–44
    [Google Scholar]
  11. Sirotnak F. M., Donati G. J., Hutchison D. J. 1964; Genetic modification of the structure and amount of FH2 reductase in amethopterin resistant Diplococcus pneumoniae . Journal of Biological Chemistry 239:4298–4302
    [Google Scholar]
  12. Sirotnak F. M., Sargent M. G., Hutchison D. J. 1967a; Genetically alterable transport of amethopterin in Diplococcus pneumoniae I. Physiological properties and kinetics of the wild-type system. Journal of Bacteriology 93:309–314
    [Google Scholar]
  13. Sirotnak F. M., Sargent M. G., Hutchison D. J. 1967b; Genetically alterable transport of amethopterin in Diplococcus pneumoniae II. Impairment of the system associated with various mutant genotypes. Journal of Bacteriology 93:315–319
    [Google Scholar]
  14. Tiraby G., Fox M. S., Bernheimer H. 1975; Marker discrimination in deoxyribonucleic acid mediated transformation of various pneumococcus strains. Journal of Bacteriology 121:608–618
    [Google Scholar]
  15. Trombe M. C. 1972; Caracterisation de mutants de resistance à l’améthoptérine chez Streptococcus pneumoniae. Alteration du potentiel transmembranaire. Mise en evidence d’une cible membranaire pour l’améthoptérine. PhD. thesis Université Paul Sabatier; Toulouse, France:
    [Google Scholar]
  16. Trombe M. G., Sicard A. M. 1973; Analyse phénotypique et génétique de mutants de resistance à l’améthoptérine présentant une alteration du système de transport de l’antimétabolite. Compie rendu hebdonadaire des séances de l’Acadèmie des sciences 276, sèrie D3495–3498
    [Google Scholar]
  17. Trombe M. C., Sicard A. M. 1975; Dihydrofolate reductase from the wild type and aminopterin-resistant mutants of Diplococcus pneumoniae . Journal of Bacteriology 121:608–618
    [Google Scholar]
  18. Trombe M. C., Laneelle M. A., Laneelle G. 1979; Lipid composition of aminopterin-resistant and sensitive strains of Streptococcus pneumoniae Effect of aminopterin inhibition. Biochimica et biophysica acta 574:290–300
    [Google Scholar]
  19. Trombe M. C., Laneelle G., Sicard A. M. 1984; Characterization of a Streptococcus pneumoniae mutant with altered electric transmembrane potential. Journal of Bacteriology 158:1109–1114
    [Google Scholar]
/content/journal/micro/10.1099/00221287-131-6-1273
Loading
/content/journal/micro/10.1099/00221287-131-6-1273
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error