1887

Abstract

The lysis gene of bacteriophage X174 was cloned under transcriptional control of the lefthanded lambda promoter, giving rise to plasmid pSB12. Plasmid pSB22, identical to pSB12 except for an amber mutation in gene , was constructed in the same way. Induction of the cloned wild-type gene by heat inactivation of the thermosensitive repressor resulted in lysis of the host bacteria. With plasmid pSB22 only amber suppressor strains of lysed after heat inactivation of . Lysis of . was shown to depend on the rate of gene translation and on the growth phase of the bacteria. Stationary cells could not be lysed by the gene product (gp), even if present in sufficient amounts to lyse growing cells. By isotopic labelling gp could be detected among the proteins synthesized in normal . as well as in minicells. Determination of gene expression suggested that gp synthesis is translationally regulated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-5-1107
1985-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/5/mic-131-5-1107.html?itemId=/content/journal/micro/10.1099/00221287-131-5-1107&mimeType=html&fmt=ahah

References

  1. Barrell B. G., Air G. M., Hutchison C. A. 1976; Overlapping genes in bacteriophage ϕX174. Nature, London 264:34–41
    [Google Scholar]
  2. Bläsi U., Geisen R., Lubitz W., Henrich B., Plapp R. 1983; Localisation of the bacteriophage ϕX174 lysis gene product in the cell envelope of Escherichia coli. The Target of Penicillin205–210 Hakenbeck R., Höltje J.-V., Labischinski H. Berlin & New York: de Gruyters;
    [Google Scholar]
  3. Bonner M., Laskey R. 1974; Detection method for tritium labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 45:433–449
    [Google Scholar]
  4. Denhardt D. T., Sinsheimer R. L. 1965; The process of infection with bacteriophage ϕX174. III. Phage maturation and lysis after synchronized infection. Journal of Molecular Biology 12:641–646
    [Google Scholar]
  5. Eigner J., Stouthamer A. H., Van Der Sluys I., Cohen J. A. 1963; A study of the 70S component of bacteriophage ϕX174. Journal of Molecular Biology 6:61–84
    [Google Scholar]
  6. Gouy M., Gautier C. 1982; Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Research 10:7055–7074
    [Google Scholar]
  7. Grantham R., Gautier C., Gouy M. 1980; Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Research 8:1893–1912
    [Google Scholar]
  8. Hayashi M. N., Hayashi M., Imai M. 1981; Bacteriophage ϕX174 – specific mRNA synthesis in cells deficient in termination factor rho activity. Journal of Virology 38:198–207
    [Google Scholar]
  9. Henrich B., Lubitz W., Plapp R. 1982a; Lysis of Escherichia coli by induction of cloned ϕX174 genes. Molecular and General Genetics 185:493–497
    [Google Scholar]
  10. Henrich B., Lubitz W., Fuchs E. 1982b; Use of benzoylated-naphthoylated DEAE-cellulose to purify and concentrate DNA eluted from agarose gels. Journal of Biochemical and Biophysical Methods 6:149–157
    [Google Scholar]
  11. Henrich H., Lubitz W., Plapp R. 1983; Expression of ϕX174 lysis gene cloned into different plasmids. The Target of Penicillin197–203 Hakenbeck R., Höltje J.-V., Labischinski H. L. Berlin & New York: de Gruyters;
    [Google Scholar]
  12. Hopp T. D., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America 783824–3828
    [Google Scholar]
  13. Hutchison C. A. III, Sinsheimer R. L. 1966; The process of infection wjth bacteriophage ϕX174. X. Mutations in a ϕX lysis gene. Journal of Molecular Biology 18:429–447
    [Google Scholar]
  14. Inokuchi H., Yamao F., Sakano H., Ozeki H. 1979; Identification of transfer RNA suppressors in Escherichia coli. I. Amber suppressor su+2, an anticodon mutant of . Journal of Molecular Biology 132:649–662
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature, London 111:680–685
    [Google Scholar]
  16. Lubitz W., Halfmann G., Plapp R. 1984a; Lysis of Escherichia coli after infection with ϕX174 depends on the regulation of the cellular autolytic system. Journal of General Microbiology 130:1079–1087
    [Google Scholar]
  17. Lubitz W., Harkness R., Ishiguro E. E. 1984b; Requirement for a functional host cell autolytic enzyme system for lysis of Escherichia coli by bacteriophage ϕX174. Journal of Bacteriology 159:385–387
    [Google Scholar]
  18. Markert A., Zillig W. 1965; Studies on the lysis of Escherichia coli by bacteriophage ϕX174. Virology 25:88–97
    [Google Scholar]
  19. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. MÜller R. U., Fitch W. M. 1982; Evolutionary selection for perfect hairpin structures in viral DNAs. Nature, London 298582–585
    [Google Scholar]
  21. Pollock T. J., Tessman E. S., Tessman J. 1978; Identification of lysis protein E of bacteriophage ϕX174. Journal of Virology 28:408–410
    [Google Scholar]
  22. Reeve J. 1979; Use of minicells for bacteriophage-directed polypeptide synthesis. Methods in Enzymology 68:493–503
    [Google Scholar]
  23. Reeve J. 1981; ϕX174-directed DNA and protein synthesis in infected minicells. Journal of Virology 40:396–402
    [Google Scholar]
  24. Remaut E., Staussens P., Fiers W. 1981; Plasmid vectors for high-efficiency expression controlled by the pL promoter of coliphage lambda. Gene 15:81–93
    [Google Scholar]
  25. Remaut E., Tsav H., Fiers W. 1983; Improvec plasmid vectors with a thermoinducible expressior and temperature-regulated runaway replication. Gene 11:103–113
    [Google Scholar]
  26. Sanger F., Coulson A. R., Hong G. F., Hill D.F, Petersen G. B. 1982; Nucleotide sequence obacteriophage λ DNA.. Journal of Molecular Biolog 162:729–773
    [Google Scholar]
  27. Young K. D., Young R. 1982; Lytic action ocloned ϕX174 gene E. Journal of Virology 44:993–1002
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-5-1107
Loading
/content/journal/micro/10.1099/00221287-131-5-1107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error