1887

Abstract

We have determined the nucleotide sequence of a 3706 bp stretch of chromosomal DNA that complements all known mutations. The sequence contains five consecutive large open reading frames capable of encoding proteins of molecular weights ranging from approximately 15000 to 36000. Analysis using integrational plasmids suggests that the region is likely to be transcribed as a single mRNA. A novel form of complementation analysis, based on derivatives of bacteriophage 105 carrying the cloned locus, has been used to define four distinct complementation groups among the eight previously characterized mutations. The locus is the largest polycistronic sporulation operon yet characterized.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-5-1091
1985-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/5/mic-131-5-1091.html?itemId=/content/journal/micro/10.1099/00221287-131-5-1091&mimeType=html&fmt=ahah

References

  1. Band L., Shimotsu H., Henner D. J. 1984; Nucleotide sequence of the Bacillus subtilis trpE and trpD genes. Gene 27:55–65
    [Google Scholar]
  2. Banner C. D. B., Moran C. P. Jr, Losick R. 1983; Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis. Journal of Molecular Biology 168:351–365
    [Google Scholar]
  3. Biggin M. D, Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences of the United States of America 803963–3965
    [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  5. Dancer B. N., Mandelstam J. 1981; Complementation of sporulation mutations in fused proto-plasts of Bacillus subtilis. Journal of General Microbiology 123:17–26
    [Google Scholar]
  6. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. 1966; A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76
    [Google Scholar]
  7. Dubnau D. 1982 Genetic transformation in Bacillus. The Molecular Biology of the Bacilli 1147–178 Dubnau D. A. New York; London: Academic Press;
    [Google Scholar]
  8. Duncan C. H., Wilson G. A., Young F. E. 1978; Mechanism of integrating foreign DNA during transformation of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 753664–3668
    [Google Scholar]
  9. Errington J. 1984; Efficient Bacillus subtilis cloning system using bacteriophage vector ϕ105J9. Journal of General Microbiology 130:2615–2628
    [Google Scholar]
  10. Erring Ton J., Mandelstam J. 1983; Variety of sporulation phenotypes resulting from mutations in a single regulatory locus, spoIIA, in Bacillus subtilis. Journal of General Microbiology 129:2091–2101
    [Google Scholar]
  11. Errington J., Mandelstam J. 1984; Genetic and phenotypic characterization of a cluster of mutations in the spoVA locus of Bacillus subtilis. Journal of General Microbiology 130:2115–2121
    [Google Scholar]
  12. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis. Journal of Bacteriology 154:1513–1515
    [Google Scholar]
  13. Fort P., Piggot P. J. 1984; Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. Journal of General Microbiology 130:2147–2153
    [Google Scholar]
  14. Guo L.-H., Yang R. C. A., Wu R. 1983; An improved strategy for rapid direct sequencing of both strands of long DNA molecules cloned in a plasmid. Nucleic Acids Research 11:5521–5540
    [Google Scholar]
  15. Haldenwang W. G., Banner C. D., Ollington J. F., Losick R., Hoch J. A.O, Connor M. B., Sonenshein A. L. 1980; Mapping a cloned gene under sporulation control by insertion of a drug resistance marker into the Bacillus subtilis chromosome. Journal of Bacteriology 142:90–98
    [Google Scholar]
  16. Hoch J. A. 1971; Selection of cells transformed to prototrophy for sporulation markers. Journal of Bacteriology 105:1200–1201
    [Google Scholar]
  17. Hopwood D. A. 1970; The isolation of mutants. Methods in Microbiology 3A363–433
    [Google Scholar]
  18. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Journal of Bacteriology 150:815–825
    [Google Scholar]
  19. Iordanescu S., Surdeanu M., Della Latta P., Novick R. 1978; Incompatibility and molecular relationships between small staphylococcal plasmids carrying the same resistance marker. Plasmid I168–179
    [Google Scholar]
  20. Jenkinson H. F., Mandelstam J. 1983; Cloning of the Bacillus subtilis lys and spoIIIB genes in phage ϕ105. Journal of General Microbiology 129:2229–2240
    [Google Scholar]
  21. Johnson W. C., Tipper D. J. 1981; Acid-soluble spore proteins of Bacillus subtilis. Journal of Bacteriology 146:972–982
    [Google Scholar]
  22. Karmazyn C, Anagnostopoulos C., Schaeffer P. 1972; Codominance of spoOA mutations in spo+/spo merodiploid strains of Bacillus subtilis. Spores V126–132 Halvorson H. O., Hanson R. S., Campbell L. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Karmazyn C, Anagnostopoulos C., Schaeffer P. 1973; Caractère rècessif de certaines mutations affectant la sporulation. Annales de I'lnstitut Pasteur 124:125–138
    [Google Scholar]
  24. Kawamura F., Saito H., Ikeda Y. 1979; A novel method for construction of specialized trans-ducing phage ρ11 of Bacillus subtilis. Gene 5:87–91
    [Google Scholar]
  25. Kawamura F., Shimotsu H., Saito H., Hirochika H., Kobayashi Y. 1981; Cloning of spoO genes with bacteriophagc and plasmid vectors in Bacillus subtilis. Sporulation and Germination109–113 Levison H. S., Sonenshein A. L., Tipper D. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Lamont I. L. 1984; A detailed genetic analysis of closely-linked sporulation mutations in Bacillus subtilis. D.Phil, thesis University of Oxford; UK:
    [Google Scholar]
  27. Liu H.-M., Chak K. F., Piggot P. J. 1982; Isolation and characterization of a recombinant plasmid carrying a functional part of the Bacillus subtilis spoIIA locus. Journal of General Microbiology 128:2805–2812
    [Google Scholar]
  28. Mandelstam J. 1976; Bacterial sporulation: a problem in the biochemistry and genetics of a primitive developmental system. Proceedings of the Royal Society B19389–106
    [Google Scholar]
  29. Martin R. B. 1964 Introduction to Biophysical Chemistry New York; San Francisco: McGraw-Hill;
    [Google Scholar]
  30. Mc Laughlin J. R., Murray C. L., Rabinowitz J. C. 1981; Unique features in the ribosome binding site sequence of the Gram-positive Staphylo-coccus aureus β-lactamase gene. Journal of Biological Chemistry 256:11283–11291
    [Google Scholar]
  31. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  32. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Research 9:309–321
    [Google Scholar]
  33. Moran C. P. Jr, Lang N., Le Grice S. F. J., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Molecular and General Genetics 186:339–346
    [Google Scholar]
  34. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriological Reviews 40:908–962
    [Google Scholar]
  35. Piggot P. J., Moir A., Smith D. A. 1981; Advances in the genetics of Bacillus subtilis differentiation. Sporulation and Germination29–39 Levinson H. S., Sonenshein A. L., Tipper D. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Piggot P. J., Curtis C. A. M., Lencastre H. de. 1984; Demonstration of a polycistronic transcrip-tional unit required for sporulation of Bacillus subtilis by use of integrational plasmid vectors. Journal of General Microbiology 130:2123–2136
    [Google Scholar]
  37. Poncz M., Solowiejczyk D., Ballantine M., Schwartz E., Surrey S. 1982; “Nonrandom” DNA sequence analysis in bacteriophage M13 by the dideoxy chain-termination method. Proceedings of the National Academy of Sciences of the United States of America 794298–4302
    [Google Scholar]
  38. Ramakrishna N., Dubnau E., Smith I. 1984; The complete DNA sequence and regulatory regions of the Bacillus licheniformis spoOH gene. Nucleic Acids Research 12:1779–1790
    [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  40. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  41. Savva D., Mandelstam J. 1984; Cloning of the Bacillus subtilis spoIIA and spoVA genes in phage ϕ105DI:lt. Journal of General Microbiology 130:2137–2145
    [Google Scholar]
  42. Schaeffer P., Ionesco H., Ryter A., Balassa G. 1965; La sporulation de Bacillus subtilis: ètude gènètique et physiologique. Colloques internationaux du Centre national de la recherche scientifique 124:553–563
    [Google Scholar]
  43. Segall J., Losick R. 1977; Cloned Bacillus subtilis DNA containing a gene that is activated early during sporulation. Cell 11:751–761
    [Google Scholar]
  44. Shimotsu H., Kawamura F., Kobayashi Y., Saito H. 1983; Early sporulation gene spoOF: nucleotide sequence and analysis of gene product. Proceedings of the National Academy of Sciences of the United States of America 80658–662
    [Google Scholar]
  45. Shine J., Dalgarno L. 1974; The 3' terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 711342–1346
    [Google Scholar]
  46. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  47. Staden R. 1977; Sequence data handling by computer. Nucleic Acids Research 4:4037–4051
    [Google Scholar]
  48. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  49. Staden R., McLachlan A. D. 1982; Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10:141–156
    [Google Scholar]
  50. Tinoco I. Jr, Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C, Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  51. Trowsdale J., Anagnostopoulos C. 1975; Evidence for the translocation of a chromosome segment in Bacillus subtilis strains carrying the trpE26 mutation. Journal of Bacteriology 111:886–898
    [Google Scholar]
  52. Yang M., Galizzi A., Henner D. 1983; Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Research 11:237–249
    [Google Scholar]
  53. Young M. 1983; The mechanism of insertion of a segment of heterologous DNA into the chromosome of Bacillus subtilis. Journal of General Microbiology 129:1497–1512
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-5-1091
Loading
/content/journal/micro/10.1099/00221287-131-5-1091
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error