1887

Abstract

Mitochondria were isolated from CBS 621 grown in carbon-limited continuous cultures on glucose, gluconate, xylose, ethanol or acetate as the carbon source and ammonia or nitrate as the nitrogen source. In all cases mitochondria were isolated which could oxidize exogenous NADH and NADPH via a cyanide- and antimycin A-sensitive but rotenone-insensitive respiratory chain. Oxidation of NADH and NADPH was coupled to energy conservation as evidenced by high respiratory control values. Different respiratory control values of mitochondria with NADH and NADPH as well as variations in the ratio of NADH and NADPH oxidase activities indicate that separate systems exist for the oxidation of exogenous redox equivalents by mitochondria of . .

Variation of the NADPH requirement for biomass formation by applying different growth conditions did not result in significant changes in NADPH oxidase activities of mitochondria. It is concluded that in . NADPH can be used in dissimilatory processes for the generation of ATP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-5-1043
1985-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/5/mic-131-5-1043.html?itemId=/content/journal/micro/10.1099/00221287-131-5-1043&mimeType=html&fmt=ahah

References

  1. Bruinenberg P. M., van Dijken J. P., Scheffers W. A. 1983a; A theoretical analysis of NADPH production and consumption in yeasts. Journal of General Microbiology 129:953–964
    [Google Scholar]
  2. Bruinenberg P. M., van Dijken J. P., Scheffers W. A. 1983b; An enzymic analysis of NADPH production and consumption in Candida utilis. Journal of General Microbiology 129:965–971
    [Google Scholar]
  3. Bruinenberg P. M., van Dijken J. P., Kuenen J. G., Scheffers W. A. 1985; Critical parameters in the isolation of mitochondria from Candida utilis grown in continuous culture. Journal of General Microbiology 131:1035–1042
    [Google Scholar]
  4. Cartledge T. G., Lloyd D. 1972; Subcellular fractionation by differential and zonal centrifugation of aerobically grown glucose-derepressed Saccharomyces carlsbergensis. Biochemical Journal 126:381–393
    [Google Scholar]
  5. Chance B., Williams G. R. 1956; The respiratory chain and oxidative phosphorylation. Advances in Enzymology 17:65–134
    [Google Scholar]
  6. Delaissé J. M., Martin P., Verheyen-Bouvy M. F., Nuns E. J. 1981; Subcellular distribution of enzymes in the yeast Saccharomycopsis lipolytica, grown on n-hexadecane, with special reference to the ω-hydroxylase. Biochimica et biophysica acta 676:77–90
    [Google Scholar]
  7. Djavadi F. H. S., Moradi M., Djavadi-Ohan-iance L. 1980; Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae. European Journal of Biochemistry 107:501–504
    [Google Scholar]
  8. Haas E., Horecker B. L., Hogness T. R. 1940; The enzymatic reduction of cytochrome c. Cytochrome c reductase. Journal of Biological Chemistry 136:747–774
    [Google Scholar]
  9. Horecker B. L. 1965; Pathways of carbohydrate metabolism and their physiological significance. Journal of Chemical Education 42:244–253
    [Google Scholar]
  10. Horecker B. L. 1978; Yeast enzymology: retrospectives and perspectives. Biochemistry and Genetics of Yeasts. Pure and Applied Aspects1–15 Bacila M., Horecker B. L., Stoppani A. O. M. New York, San Francisco: Academic Press;
    [Google Scholar]
  11. Kärenlampi S. O., Marin E., Hänninen O. O. P. 1981; Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae. Biochemical Journal 194:407–413
    [Google Scholar]
  12. Lehninger A. L. 1951; Oxidative phosphorylation in diphosphopyridine nucleotide-linked systems. In Phosphorus Metabolism. A Symposium on the Role of Phosphorus in the Metabolism of Plants and Animals I344–366 McElroy W. D., Glass B. Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  13. Lloyd D., Edwards S. W. 1978; Electron transport pathways alternative to the main phos-phorylating respiratory chain. Functions of Alternative Terminal Oxidases. Proceedings of the 11th FEBS Meeting1–10 Degn H., Lloyd D., Hill G. C. Oxford, New York: Pergamon Press;
    [Google Scholar]
  14. Mackler B., Haynes B., Person R., Palmer G. 1980; Electron transport systems of Candida utilis. Purification and properties of the respiratory chain-linked external NADH dehydrogenase. Biochimica et biophysica acta 591:289–297
    [Google Scholar]
  15. Mackler B., Bevan C., Person R., Davis K. A. 1981; Purification and properties of the respiratory chain-linked internal NADH dehydrogenase of Candida utilis. Biochemistry International 3:9–17
    [Google Scholar]
  16. Mian F. A., Fencl Z., Prokop A., Mohagheghi A., Fazeli A. 1974; Effect of growth rate on the glucose metabolism of yeast grown in continuous culture. Radiorespirometric studies. Folia microhiologica 19:191–198
    [Google Scholar]
  17. Møller I. M., Palmer J. M. 1981; The inhibition of exogenous NAD(P)H oxidation in plant mitochondria by chelators and mersalyl as a function of pH. Physiologia plantarum 53:413–420
    [Google Scholar]
  18. Palmer J. M., Møller I. M. 1982; Regulation of NAD(P)H dehydrogenases in plant mitochondria. Trends in Biochemical Sciences 7:258–261
    [Google Scholar]
  19. Perlman P. S., Mahler H. R. 1970; Intracellular localization of enzymes in yeast. Archives of Biochemistry and Biophysics 136:245–259
    [Google Scholar]
  20. Schuurmans Stekhoven F. M. A. H. 1966; Studies on yeast mitochondria. I. Existence of three phosphorylation sites along the respiratory chain of isolated yeast mitochondria. Archives of Biochemistry and Biophysics 115:555–568
    [Google Scholar]
  21. Schwitzguebel J.P., Palmer J.M. 1981; Properties of mitochondria isolated from Neurospora crassa grown with acetate. FEMS Microbiology Letters 11:273–277
    [Google Scholar]
  22. Suomalainen H., Oura E. 1971; Yeast nutrition and solute uptake. In The Yeasts 23–74 Rose A. H., Harrison J. S. London New York: Academic Press;
    [Google Scholar]
  23. Tanaka A., Osumi M., Fukui S. 1982; Peroxisomes of alkane-grown yeast : fundamental and practical aspects. Annals of the New York Academy of Sciences 386:183–199
    [Google Scholar]
  24. Tottmar S. O. C., Ragan C. I. 1971; The purification and properties of the respiratory-chain reduced nicotinamide-adenine dinucleotide dehydrogenase of Torulopsis utilis. Biochemical Journal 124:853–865
    [Google Scholar]
  25. Trinn M., Käppeli O., Fiechter A. 1982; Occurrence of cytochrome P450 in continuous cultures of Saccharomyces cerevisiae. European Journal of Applied Microbiology and Biotechnology 15:64–68
    [Google Scholar]
  26. Von Jagow G., Klingenberg M. 1970; Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. European Journal of Biochemistry 12:583–592
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-5-1043
Loading
/content/journal/micro/10.1099/00221287-131-5-1043
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error