1887

Abstract

Purified LPS from a virulent cherry isolate of pv. was a mixture of smooth and rough molecular species. Mild acid hydrolysis yielded a precipitate of lipid A and a carbohydrate fraction which, by gel permeation chromatography, yielded three peaks of material. The first (high molecular weight) peak was composed almost entirely of a rhamnan, the sidechain polysaccharide. The second peak contained core oligosaccharide and comprised rhamnose, glucose, heptose, 2-keto-3-deoxyoctonate (KDO), phosphate, glucosamine, galactosamine and alanine. The third (low molecular weight) peak contained KDO, phosphate and ethanolamine. Lipid A contained glucosamine, phosphate and the fatty acids 12:0, 3-OH 10:0, 2-OH 12:0 (all ester-linked to glucosamine), and 3-OH 12:0, which was amide-linked. The typing phage A7, which uses LPS as its binding site, was found to possess a rhamnanase which split the sidechains from smooth LPS, releasing them as oligosaccharide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-4-963
1985-04-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/4/mic-131-4-963.html?itemId=/content/journal/micro/10.1099/00221287-131-4-963&mimeType=html&fmt=ahah

References

  1. Bartell P. F., Lam G. K. H., Orr T. E. 1968; Purification and properties of polysaccharide depo-lymerase associated with phage-infected Pseudo-monas aeruginosa . Journal of Biological Chemistry 243:2077–2080
    [Google Scholar]
  2. Bauchop T., Elsden S. R. 1960; The growth of micro-organisms in relation to their energy supply. Journal of General Microbiology 23:457–469
    [Google Scholar]
  3. Castillo F. J., Bartell P. F. 1976; Localization and functional role of Pseudomonas bacteriophage 2 depolymerase. Journal of Virology 18:701–708
    [Google Scholar]
  4. Chester I. R., Meadow P. M. 1975; Hetero-geneity of the lipopolysaccharide from Pseudomonas aeruginosa . European Journal of Biochemistry 58:273–282
    [Google Scholar]
  5. Chester I. R., Meadow P. M., Pitt T. 1973; The relationship between the O-antigenic lipopolysac-charides and serological specificity in strains of Pseudomonas aeruginosa of different O-serotypes. Journal of General Microbiology 78:305–318
    [Google Scholar]
  6. Crosse J. E. 1959; Bacterial canker of stone-fruits. IV. Investigation of a method for measuring the inoculum potential of cherry trees. Annals of Applied Biology 47:306–317
    [Google Scholar]
  7. Crosse J. E., Garrett C. M. E. 1963; Studies on the bacteriophagy of Pseudomonas morsprunorum Ps. syringae and related organisms. Journal of Applied Bacteriology 26:159–177
    [Google Scholar]
  8. Crosse J. E., Garrett C. M. E. 1970; Pathogeni-city of Pseudomonas morsprunorum in relation to host specificity. Journal of General Microbiology 62:315–327
    [Google Scholar]
  9. Dawson R. M. C., Elliott E. C., Elliott W. H., Jones K. M. 1969 Data for Biochemical Research, 2. Oxford: University Press;
    [Google Scholar]
  10. Drewry D. T., Symes K. C., Gray G. W., Wilkinson S. G. 1975; Studies of polysaccharide fractions from the lipopolysaccharide of Pseudomonas aeruginosa NCTC 1999. Biochemical Journal 149:93–106
    [Google Scholar]
  11. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350–356
    [Google Scholar]
  12. Erikson D. 1945; Certain aspects of resistance of plum trees to bacterial canker. Annals of Applied Biology 32:44–52
    [Google Scholar]
  13. Fensom A. H., Meadow P. M. 1970; Evidence for two regions in the polysaccharide moiety of the lipopolysaccharide of Pseudomonas aeruginosa 8602. FEBS Letters 9:81–84
    [Google Scholar]
  14. Freigoun S. O., Crosse J. E. 1975; Host relations and distribution of a physiological and pathological variant of Pseudomonas morsprunorum . Annals of Applied Biology 81:317–330
    [Google Scholar]
  15. Garrett C. M. E., Crosse J. E., Sletten A. 1974; Relations between phage sensitivity and virulence in Pseudomonas morsprunorum . Journal of General Microbiology 80:475–483
    [Google Scholar]
  16. Garrett C. M. E., Panagopoulos C. G., Crosse J. E. 1966; Comparison of plant pathogenic pseudomonads from fruit trees. Journal of Applied Bacteriology 29:342–356
    [Google Scholar]
  17. Hancock I. C., Humphreys G. O., Meadow P. M. 1970; Characterization of the hydroxy acids of Pseudomonas aeruginosa 8602. Biochimica et biophy-sica acta 202:389–391
    [Google Scholar]
  18. Hignett R. C., Quirk A. V. 1979; Properties of phytotoxic cell-wall components of plant pathogenic pseudomonads. Journal of General Microbiology 110:77–81
    [Google Scholar]
  19. Jarrell K. F., Kropinski A. M. 1981; Pseudomonas aeruginosa bacteriophage ϕPLS27–lipopoly-saccharide interactions. Journal of Virology 40:411–420
    [Google Scholar]
  20. Klement Z. 1963; Rapid detection of phytopatho-genicity of phytopathogenic pseudomonads. Nature London: 199299–300
    [Google Scholar]
  21. Knirel Y. A., Shashkov A. S., Dmitriev B. A., Kochetkov N. K., Kasyanchuk N. V., Zakhar-ova I. Y. 1980; Antigenic polysaccharides of bacteria. II. The structure and 13C-NMR spectrum of O-specific polysaccharide from Pseudomonas cepacia. Bioorganischeskaya Khimiya 6:1851–1859
    [Google Scholar]
  22. Knox K. W., Cullen J., Work E. 1967; An extracellular lipopolysaccharide-phospholipid-pro-tein complex produced by Escherichia coli grown under lysine-limiting conditions. Biochemical Journal 103:192–201
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 111:680–685
    [Google Scholar]
  24. Lindberg A. A. 1977; Bacterial surface carbohydrates and bacteriophage adsorption. In Surface Carbohydrates of the Prokaryote Cell289–356 Sutherland I. London: Academic Press;
    [Google Scholar]
  25. Lomax J. A., Gray G. W., Wilkinson S. G. 1974; Studies of the polysaccharide fraction from the lipopolysaccharide of Pseudomonas alcaligenes . Biochemical Journal 139:633–643
    [Google Scholar]
  26. Lüderitz O., Galanos C., Risse H. J., Ruschmann E., Schlecht S., Schmidt G., Schule-Holthau-sen H., Wheat R., Westphal O., Schloss-HARDT J. 1966; Structural relationships of Salmonella and R antigens. Annals of the New York Academy of Sciences 133:349–374
    [Google Scholar]
  27. Moore S., Stein W. H. 1948; Photometric ninhydrin method for use in the chromatography of amino acids. Journal of Biological Chemistry 176:367–388
    [Google Scholar]
  28. Murphy J., Riley J. P. 1962; A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta 27:31–36
    [Google Scholar]
  29. Osborn M. J. 1963; Studies on the Gram-negative cell wall. I. Evidence for the role of 2-keto-3-deoxyoctonate in the lipopolysaccharide of Salmonella typhimurium . Proceedings of the National Academy of Sciences of the United States of America 50499–506
    [Google Scholar]
  30. Quirk A. V. 1976; Cell wall components of Pseudo-monas morsprunorum (Wormald) and their role in pathogenicity. PhD thesis, University of London
    [Google Scholar]
  31. Quirk A. V., Sletten A., Hignett R. C. 1976; Properties of phage receptor lipopolysaccharide from Pseudomonas morsprunorum . Journal of General Microbiology 96:375–381
    [Google Scholar]
  32. Rietschel E., Gottert H., Lüderitz O., Westphal O. 1972; Nature and linkages of the fatty acids present in the lipid A component of Salmonella lipopolysaccharides. European Journal of Biochemistry 28:166–173
    [Google Scholar]
  33. Rondle C. J. M., Morgan W. T. J. 1955; Determination of glucosamine and galactosamine. Biochemical Journal 61:586–589
    [Google Scholar]
  34. Rowe P. S. N., Meadow P. M. 1983; Structure of the core oligosaccharide from the lipopolysaccharide of Pseudomonas aeruginosa PAC1R and its defective mutants. European Journal of Biochemistry 132:329–337
    [Google Scholar]
  35. Saini A. S. 1966; Technical improvements in paper chromatography of sugars: method of sample desalting and sensitive staining reagent. Journal of Chromatography 24:484–486
    [Google Scholar]
  36. Salkinoja-Salonen M., Boeck R. 1978; Characterization of lipopolysaccharides isolated from Agro-bacterium tumefaciens . Journal of General Micro-biology 105:119–125
    [Google Scholar]
  37. Smith A. R. W., Hignett R. C. 1981; Compo-sition of lipopolysaccharide from Pseudomonas mors-prunorum and its digestion by bacteriophage A7. Society for General Microbiology Quarterly 8:262
    [Google Scholar]
  38. Tsai C.-M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacryl-amide gels. Analytical Biochemistry 119:115–119
    [Google Scholar]
  39. Weissbach A., Hurwitz J. 1959; The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. Journal of Biological Chemistry 234:705–709
    [Google Scholar]
  40. Westphal O., Jann K. 1965; Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. Methods in Carbohydrate Chemistry 5:83–91
    [Google Scholar]
  41. Wilkinson S. G., Galbraith L. 1975; Studies of lipopolysaccharides from Pseudomonas aeruginosa . European Journal of Biochemistry 52:331–343
    [Google Scholar]
  42. Wilkinson S. G., Galbraith L., Lightfoot G. A. 1973; Cell walls, lipids and lipopolysaccharides of Pseudomonas spp. European Journal of Biochemistry 33:158–174
    [Google Scholar]
  43. Wright A., McConnell M., Kanegasaki S. 1980; Lipopolysaccharide as a bacteriophage re-ceptor. In Receptors and Recognition series B 7: part 1 29–57 Randell L. L., Philipson L. London: Chapman & Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-4-963
Loading
/content/journal/micro/10.1099/00221287-131-4-963
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error