1887

Abstract

The transport of the neutral amino acid -glutamine by occurred by means of two permeases : the neutral-specific permease and the general permease. For both transport systems, accumulation of -glutamine was a saturable process that occurred against a concentration gradient and was dependent upon metabolic energy, suggesting that accumulation is a carrier-mediated active transport process. The transported glutamine was incorporated into cellular protein. The kinetic values and were determined for glutamine transport by both systems. The glutamine analogues methionine sulphoximine and -glutamyl hydroxamate appear to be transported by the same permeases that transport glutamine.

In addition to determining the physiological properties of glutamine transport, we examined whether the ;;;- strain could transport this amino acid. This strain is defective for constitutive amino acid transport and for the ability to utilize amino acids as sole nitrogen sources, with the exception of glutamine. No glutamine transport was detected, suggesting that glutamine utilization by this strain is not due to its ability to transport this amino acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-4-905
1985-04-01
2022-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/4/mic-131-4-905.html?itemId=/content/journal/micro/10.1099/00221287-131-4-905&mimeType=html&fmt=ahah

References

  1. Arst H. M. Jr, Cove D. J. 1973; Nitrogen metabolite repression in Aspergillus nidulans . Molecular and General Genetics 126:111–141
    [Google Scholar]
  2. Benjamin A. M., Verjee Z. H., Quastel J. H. 1980; Effects of branched-chain l-amino acids, l-phenylalanine, and l-methionine on the transport of l-glutamine in rat brain cortex in vitro. Influence of cations. Journal of Neurochemistry 35:78–87
    [Google Scholar]
  3. Betteridge P. R., Ayling P. D. 1975; The role of methionine transport-defective mutations in resistance to methionine sulphoximine in Salmonella typhimurium . Molecular and General Genetics 138:41–52
    [Google Scholar]
  4. Chang H. C. P., Sorger G. J. 1976; Effect of ammonium ions on the induction of nitrite reductase in Neurospora crassa . Journal of Bacteriology 126:1002–1004
    [Google Scholar]
  5. Chapman J. S., Meeks J. C. 1983; Glutamine and glutamate transport by Anabena variabilis . Journal of Bacteriology 156:122–129
    [Google Scholar]
  6. Cooper A. J., Meister A. 1977; The glutamine transaminase-ω-amidase pathway. CRC Critical Reviews in Biochemistry 4:281–303
    [Google Scholar]
  7. Dantzig A. H., Zurowski W. K., Ball T. M., Nason A. 1978; Induction and repression of nitrate reductase in Neurospora crassa . Journal of Bacteriology 133:671–679
    [Google Scholar]
  8. DeBusk B. G., DeBusk A. G. 1965; Molecular transport in Neurospora crassa. I. Biochemical properties of a phenylalanine permease. Biochimica et Biophysica Ada 104:139–150
    [Google Scholar]
  9. DeBusk R. M., DeBusk A. G. 1980; Physiological and regulatory properties of the general amino acid transport system of Neurospora crassa . Journal of Bacteriology 143:188–197
    [Google Scholar]
  10. DeBusk R. M., Ogilvie S. 1982; Physiological adaptation to the loss of amino acid transport ability. Journal of Bacteriology 152:545–548
    [Google Scholar]
  11. DeBusk R. M., Ogilvie S. 1984a; Participation of an extracellular deaminase in amino acid utilization by Neurospora crassa . Journal of Bacteriology 159:583–589
    [Google Scholar]
  12. DeBusk R. M., Ogilvie S. 1984b; Nitrogen regulation of amino acid utilization by Neurospora crassa . Journal of Bacteriology 160:493–498
    [Google Scholar]
  13. Dixon M. 1953; The determination of enzyme inhibition constants. Biochemical Journal 55:170–171
    [Google Scholar]
  14. Dowd J. E., Riggs D. S. 1965; A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. Journal of Biological Chemistry 240:863–869
    [Google Scholar]
  15. Dubois E., Vissers S., Grenson M., Wiame J.-M. 1977; Glutamine and ammonia in nitrogen catabo-lite repression in Saccharomyces cerevisiae . Biochemical and Biophysical Research Communications 75:233–239
    [Google Scholar]
  16. Dunn-Coleman N. S., Garrett R. H. 1980; The role of glutamine synthetase and glutamine metabolism in nitrogen metabolite repression, a regulatory phenomenon in the lower eukaryote Neuro-spora crassa . Molecular and General Genetics 179:25–32
    [Google Scholar]
  17. Dunn-Coleman N. S., ., Tomsett A. B., Garrett R. H. 1979; Nitrogen metabolite repression of nitrate reductase in Neurospora crassa: effect of the gln-la locus. Journal of Bacteriology 139:697–700
    [Google Scholar]
  18. Espin G., Mora J. 1978; Effect of the deprivation of amino acids on conidia of Neurospora crassa . Journal of General Microbiology 104:233–240
    [Google Scholar]
  19. Espín G., Palacios R., Mora J. 1979; Glutamine metabolism in nitrogen-starved conidia of Neurospora crassa . Journal of General Microbiology 115:59–68
    [Google Scholar]
  20. Facklam T. J., Marzluf G. A. 1978; Nitrogen regulation of amino acid catabolism in Neurospora crassa . Biochemical Genetics 16:343–354
    [Google Scholar]
  21. Hunt A. G., Hong J.-S. 1983; Properties and characterization of binding protein dependent active transport of glutamine in isolated membrane vesicles of Escherichia coli . Biochemistry 22:844–850
    [Google Scholar]
  22. Hynes M. J. 1974; Effects of ammonium, l-glutamate, and l-glutamine on nitrogen catabolism in Aspergillus nidulans . Journal of Bacteriology 120:1116–1123
    [Google Scholar]
  23. Kilrg M. S., Handlogten M. E., Christensen H. N. 1980; Characteristics of an amino acid transport system in rat liver for glutamine, aspara-gine, histidine, and closely related analogs. Journal of Biological Chemistry 25:4011–4019
    [Google Scholar]
  24. Kovacevic S., Pavlovic M., Bajin K., Brebver-ina M. 1979; The use of sulfhydryl reagents in the elucidation of glutamine transport across the inner mitochondrial membrane. In Function and Molecular Aspects of Biomembrane Transport415–418 Quagliariello E., Palmieri F., Papa S., Klinkenberg M. Amsterdam: Elsevier/North-Holland Biomedical Press;
    [Google Scholar]
  25. Magasanik B. 1982; Genetic control of nitrogen assimilation in bacteria. Annual Review of Genetics 16:135–168
    [Google Scholar]
  26. Marzluf G. A. 1981; Regulation of nitrogen metabolism and gene expression in fungi. Microbiological Reviews 45:437–461
    [Google Scholar]
  27. Masters P. S., Hong J. S. 1981; Genetics of the glutamine transport system in Escherichia coli . Journal of Bacteriology 147:805–819
    [Google Scholar]
  28. Monder C., Meister A. 1985; α-Ketoglutaramic acid as a product of enzymic transamination of glutamine in Neurospora . Biochimica et Biophysica Acta 28:202–203
    [Google Scholar]
  29. Ogilvie-Villa S., ., DeBusk R. M., DeBusk A. G. 1981; Characterization of 2-aminoisobutyric acid transport in Neurospora crassa: a general amino acid permease-specific substrate. Journal of Bacteriology 147:944–948
    [Google Scholar]
  30. Pateman J. A., Kinghorn J. R. 1976; Nitrogen metabolism. In The Filamentous Fungi 2159–237 Smith J. E., Berry D. R. New York: John Wiley & Sons;
    [Google Scholar]
  31. Pateman J. A., Kinghorn J. R., Dunn E., Forbes E. 1973; Ammonium regulation in Aspergillus nidulans . Journal of Bacteriology 114:943–950
    [Google Scholar]
  32. Plate C. A. 1979; Requirement for membrane potential in active transport of glutamine by Escherichia coli . Journal of Bacteriology 137:221–225
    [Google Scholar]
  33. Premakumar R., Sorger G. J., Gooden G. 1979; Nitrogen metabolite repression of nitrate reductase in Neurospora crassa . Journal of Bacteriology 137:1119–1126
    [Google Scholar]
  34. Premakumar R., Sorger G. J., Gooden D. 1980; Repression of nitrate reductase in Neurospora studied by using l-methionine-dl-sulfoximine and glutamine auxotroph gln-lb. Journal of Bacteriology 143:411–415
    [Google Scholar]
  35. Reinert W. R., Marzluf G. A. 1975; Regulation of the purine catabolic enzymes in Neurospora crassa . Archives of Biochemistry and Biophysics 166:565–574
    [Google Scholar]
  36. Reynolds R. A., Wald H, . & Segal S. 1982; Glutamine uptake by rat renal basolateral mem-brane vesicles. Bioscience Reports 2:883–890
    [Google Scholar]
  37. Simpson D. P. 1980; Modulation of glutamine transport and metabolism in mitochondria from dog renal cortex. Journal of Biological Chemistry 255:7123–7128
    [Google Scholar]
  38. Vichido I., Mora Y., Quinto C, Palacios R., Mora J. 1978; Nitrogen regulation of glutamine synthetase in Neurospora crassa . Journal of General Microbiology 106:251–259
    [Google Scholar]
  39. Vogel H. J. 1964; Distribution of lysine pathways among fungi: evolutionary implications. American Naturalist 98:435–446
    [Google Scholar]
  40. Weiner J. H., Heppel L. A. 1971; A binding protein for glutamine and its relation to active transport in Escherichia coli . Journal of Biological Chemistry 246:6933–6941
    [Google Scholar]
  41. Willis R. C, Iwata K. K., Furlong C. E. 1975; Regulation of glutamine transport in Escherichia coli . Journal of Bacteriology 122:1032–1037
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-4-905
Loading
/content/journal/micro/10.1099/00221287-131-4-905
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error