The Ammonium Permease of MNF3841 Free

Abstract

An ammonium permease was derepressed when was grown in chemostat culture under conditions of nitrogen limitation. The ammonium permease was characterized by direct measurements with an ion-specific ammonium electrode. Cells grown under ammonia, nitrate, glutamate or methylamine limitation had permease activity, while those grown with excess (10 m) ammonium chloride or glutamate did not. On transfer from N-limited to N-excess conditions, the permease disappeared rapidly, and all activity was lost within 18 h. Uptake by the permease was sensitive to azide, carbonyl cyanide chlorophenylhydrazone,2,4-dinitrophenol, nigericin and valinomycin. The apparent for was 0·015 m; ammonium uptake had a narrow maximum around pH 7·5. The internal ammonia concentration of N-limited cells was 0·4 m, with up to 60-fold gradients of was 0·015 m; forming across the membrane within 30 min. Hydrazine and hydroxylamine strongly inhibited ammonium uptake, with methylamine, glutamine, aspartate and glycine less effective as inhibitors. Isolated pea bacteroids capable of transporting succinate did not possess the ammonium permease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-4-757
1985-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/4/mic-131-4-757.html?itemId=/content/journal/micro/10.1099/00221287-131-4-757&mimeType=html&fmt=ahah

References

  1. Alef K., Kleiner D. 1982; Evidence for an ammonium transport system in the N2-fixing photo-trophic bacterium Rhodospirillum rubrum . Archives of Microbiology 132:79–81
    [Google Scholar]
  2. Barnes E. M., Zimniak P. 1981; Transport of ammonium and methylammonium ions by Azotobacter vinelandii . Journal of Bacteriology 146:512–516
    [Google Scholar]
  3. Bergersen F. J. 1965; Ammonia – an early stable product of nitrogen fixation by soybean root nodules. Australian Journal of Biological Sciences 18:1–9
    [Google Scholar]
  4. Bergersen F. J., Turner G. L. 1967; Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochimica et biophysica acta 141:507–515
    [Google Scholar]
  5. Bergersen F. J., Turner G. L. 1976; The role of O2 limitation in control of nitrogenase in continuous cultures of Rhizobium sp. Biochemical and Biophysical Research Communications 73:524–531
    [Google Scholar]
  6. Boland M. J., Farnden K. J. F., Robertson J. G. 1980; Ammonia assimilation in nitrogen-fixing legume nodules. Nitrogen Fixation 233–52 Newton W. E., Orme-Johnson W. H. Baltimore, USA: University Press;
    [Google Scholar]
  7. Breiman A., Barash I. 1980; Methylamine and ammonia transport in Stemphylium botryosum . Journal of General Microbiology 116:201–206
    [Google Scholar]
  8. Brown C. M., Dilworth M. J. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids. Journal of General Microbiology 86:39–48
    [Google Scholar]
  9. Dilworth M. J., Glenn A. R. 1982; Movements of ammonia in Rhizobium leguminosarum . Journal of General Microbiology 128:29–37
    [Google Scholar]
  10. Dilworth M. J., Thorneley R. N. F. 1981; Nitrogenase of Klebsiella pneumoniae . Biochemical Journal 193:971–983
    [Google Scholar]
  11. Dilworth M. J., McKay I. A., Franklin M., Glenn A. R. 1983; Catabolite effects on enzyme induction and substrate utilization in Rhizobium leguminosarum . Journal of General Microbiology 129:359–366
    [Google Scholar]
  12. Duggleby R. G. 1981; A non-linear regression programme for small computers. Analytical Biochemistry 110:9–18
    [Google Scholar]
  13. Fawcett J. K., Scott J. E. 1960; A rapid and precise method for the determination of urea. Journal of Clinical Pathology 13:156–159
    [Google Scholar]
  14. Glenn A. R., Dilworth M. J. 1984; Methylamine and ammonium transport systems in Rhizobium leguminosarum MNF3841. Journal of General Microbiology 130:1961–1968
    [Google Scholar]
  15. Glenn A. R., Poole P. S., Hudman J. F. 1980; Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum . Journal of General Microbiology 119:267–271
    [Google Scholar]
  16. Glenn A. R., Arwas R., McKay I. A., Dilworth M. J. 1984; Fructose metabolism in wild-type, fructokinase-negative and revertant strains of Rhizobium leguminosarum . Journal of General Microbiology 130:231–237
    [Google Scholar]
  17. Gober J. W., Kashket E. R. 1983; Methyl-ammonium uptake by Rhizobium sp. 32H1. Journal of Bacteriology 153:1196–1201
    [Google Scholar]
  18. Hackette S. L., Skye G. E., Burton C., Cervone F. 1970; Characterization of an ammonium transport system in filamentous fungi with methyl-ammonium-14C as the substrate. Journal of Biological Chemistry 245:4241–4250
    [Google Scholar]
  19. Hartmann A., Kleiner D. 1982; Ammonium (methylammonium) transport by Azospirtilum spp. FEMS Microbiology Letters 15:65–67
    [Google Scholar]
  20. Johnston A. W. B., Beringer J. E. 1975; Identification of the Rhizobium strains in pea root nodules using genetic markers. Journal of General Microbiology 87:343–350
    [Google Scholar]
  21. Kennedy I. R. 1966; Primary products of symbiotic nitrogen fixation. I. Short-term exposures of serra-della nodules to 15N2 . Biochimica et biophysica acta 130:284–294
    [Google Scholar]
  22. Kleiner D. 1975; Ammonium uptake by nitrogen fixing bacteria. I. Azotobacter vinelandii . Archives of Microbiology 104:163–169
    [Google Scholar]
  23. Kleiner D. 1976; Ammonium uptake and metabolism by nitrogen fixing bacteria. II. Klebsiella pneumoniae . Archives of Microbiology 111:85–91
    [Google Scholar]
  24. Kleiner D. 1981; The transport of NH3 and across biological membranes. Biochimica et biophysica acta 639:41–52
    [Google Scholar]
  25. Kleiner D. 1982; Ammonium (methylammonium) transport by Klebsiella pneumoniae . Biochimica et biophysica acta 688:702–708
    [Google Scholar]
  26. Kleiner D., Fitzke E. 1979; Evidence for ammonia translocation by Clostridium pasteurianum . Biochemical and Biophysical Research Communications 86:211–217
    [Google Scholar]
  27. Kleiner D., Fitzke E. 1981; Some properties of a new electrogenic transport system: the ammonium (methylammonium) carrier from Clostridium pasteurianum . Biochimica et biophysica acta 641:138–147
    [Google Scholar]
  28. Laane C., Krone W., Konings W., Veeger C. 1980; Short-term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum . European Journal of Biochemistry 103:39–46
    [Google Scholar]
  29. Osburne M. S. 1982; Rhizobium meliloti mutants altered in ammonium utilization. Journal of Bacteriology 151:1633–1636
    [Google Scholar]
  30. Pateman J. A., Dunn E., Kinghorn J. R., Forbes E. C. 1974; The transport of ammonium and methylammonium in wild type and mutant cells of Aspergillus nidulans . Molecular and General Genetics 133:225–236
    [Google Scholar]
  31. Rai A. N., Rowell P., Stewart W. D. P. 1984; Methylamine transport in N2-fixing cyanobacteria. Advances in Nitrogen Fixation Research239 Veeger C., Newton W. E. The Hague: Martinus Nijhoff/Dr W. Junk;
    [Google Scholar]
  32. Roon R. J., Even H. L., Dunlop P., Larimore F. L. 1975; Methylamine and ammonia transport in Saccharomyces cerevisiae . Journal of Bacteriology 122:502–509
    [Google Scholar]
  33. Shapiro B. M., Stadtman E. R. 1970; Glutamine synthetase (E. coli). Methods in Enzymology 17A:910–922
    [Google Scholar]
  34. Stevenson R., Silver S. 1977; Methylammonium uptake by Escherichia coli: evidence for a bacterial transport system. Biochemical and Biophysical Research Communications 75:1133–1139
    [Google Scholar]
  35. Stock J. B., Rauch B., Roseman S. 1977; Periplasmic space in Salmonella typhimurium and Escherichia coli . Journal of Biological Chemistry 252:7850–7861
    [Google Scholar]
  36. Tempest D. W., Meers J. L., Brown C. M. 1973; Glutamate synthetase (GOGAT): A key enzyme in the assimilation of ammonia by prokaryotic organisms. The Enzymes of Glutamine Metabolism167–182 Prusiner S., Stadtman E. R. New York: Academic Press;
    [Google Scholar]
  37. Wiegel J., Kleiner D. 1982; Survey of ammonium (methylammonium) transport by aerobic N2-fixing bacteria – the special case of Rhizobium . FEMS Microbiology Letters 15:61–63
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-4-757
Loading
/content/journal/micro/10.1099/00221287-131-4-757
Loading

Data & Media loading...

Most cited Most Cited RSS feed