1887

Abstract

Summary: The basic theory of electrolytic conductivity in solutions is described and a model is proposed which allows the direction and relative rates of change of conductivity in microbial cultures to be predicted. Guidelines are presented to enable nutrients to be selected so as to maximize conductivity changes. It is shown that a major consideration in any strategy to maximize conductivity changes in cultures must be to direct as many metabolic activities as possible to act in concert in the production or consumption of protons, and to combine this with use of a pH buffer that exhibits a large change in conductivity on taking up or losing a proton. The ability to predict conductivity changes in microbial systems should permit the rational design of culture media for the selective enumeration of microbes by conductimetric methods and the development of other kinds of conductimetric assays.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-11-3055
1985-11-01
2021-05-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/11/mic-131-11-3055.html?itemId=/content/journal/micro/10.1099/00221287-131-11-3055&mimeType=html&fmt=ahah

References

  1. Allison J. B., Anderson J. A., Cole W. H. 1938; The method of electrical conductivity in studies on bacterial metabolism. Journal of Bacteriology 36:571–586
    [Google Scholar]
  2. Bockris J. O., Reddy A. K. N. 1970 Modem Electrochemistry I London: Macdonald;
    [Google Scholar]
  3. Butler J. N. 1982 Carbon Dioxide Equilibria and their Applications Reading, Mass: Addison-Wesley;
    [Google Scholar]
  4. Cady P. 1975 Rapid automated bacterial identification by impedance measurement. In New Approaches to the Identification of Microorganisms73–99 Edited by Heden C. G., Illeni T. New York: Wiley;
    [Google Scholar]
  5. Curtis G. D. W., Thomas C. D., Johnston H. H. 1985; A note on the use of dextran in blood cultures monitored by conductance methods. Journal of Applied Bacteriology 58:571–575
    [Google Scholar]
  6. Conway B. E. 1952 Electrochemical Data Amsterdam: Elsevier;
    [Google Scholar]
  7. Crow D. R. 1979 Principles and Applications oj Electrochemistry, 2nd. edn. London: Chapman & Hall;
    [Google Scholar]
  8. Davies C. W. 1967 Electrochemistry London: Newnes;
    [Google Scholar]
  9. Eden G., Eden R. 1984; Enumeration of microorganisms by their dynamic ac conductance patterns. IEEE Transactions on Biomedical Engineering BME-31193–198
    [Google Scholar]
  10. Erdey-Gruz T. 1974 Transport Phenomena in Aqueous Solutions London: Hilger;
    [Google Scholar]
  11. Firstenberg-Eden R., Eden G. 1984 Impedance Microbiology Letchworth, UK: Research Studies Press;
    [Google Scholar]
  12. Good N. E., Izawa S. 1972; Hydrogen ion buffers. Methods in Enzymology 24B:53–68
    [Google Scholar]
  13. Mahler H. R., Cordes E. H. 1971 Biological Chemistry, 2nd. edn. New York: Harper & Row;
    [Google Scholar]
  14. Mcmurdo I. H., Whyard S. 1984; Suitability of rapid microbiological methods for the hygienic management of spray drier plant. Journal of the Society of Dairy Technology 37:4–9
    [Google Scholar]
  15. Oker-Blom M. 1912; Die elektrische Leitfahigkeit im Dienste der Bakteriologie. Centralblattfur Bakter-iologie Abt. I 65:382–389
    [Google Scholar]
  16. Owens J. D., Miskin D. R., Wacher-Viveros M. C., Benge L. C. A. 1985; Sources of conductance changes during bacterial reduction of trimethyl-amine oxide to trimethylammonium in phosphate buffer. Journal of General Microbiology 131:1357–1361
    [Google Scholar]
  17. Parsons L. B., Sturges W. S. 1926; The possibilities of the conductivity method as applied to studies of bacterial metabolism. Journal of Bacteriology 11:177–188
    [Google Scholar]
  18. Parsons R. 1959 Handbook of Electrochemical Constants London: Butterworths;
    [Google Scholar]
  19. Pethybridge A. D. 1982; Study of association in unsymmetrical electrolytes by conductance measurements. Zeitschrift fur physikalische Chemie, neue Folge 133:143–158
    [Google Scholar]
  20. Pethybridge A. D., Taba S. S. 1982; Precise conductimetric studies on aqueous solutions of 2:2 electrolytes. Journal of the Chemical Society: Faraday Transactions I 78:1331–1344
    [Google Scholar]
  21. Pethybridge A. D., Ison R. W., Harrigan W. F. 1983; Dissociation constant of sorbic acid in water and water-glycerol mixtures at 25 °C from conductance measurements. Journal of Food Technology 18:389–396
    [Google Scholar]
  22. Pirt S. J. 1975 Principles of Microbe and Cell Cultivation Oxford: Blackwell;
    [Google Scholar]
  23. Richards J. C. S., Jason A. C., Hobbs G., Gibson D. M., Christie R. H. 1978; Electronic measurement of bacterial growth. Journal of Physics E: Scientific Instruments 11:560–568
    [Google Scholar]
  24. Roos W., Luckner M. 1984; Relationship between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. Journal of General Microbiology 130:1007–1014
    [Google Scholar]
  25. Stark J. G., Wallace H. G. 1982 Chemistry Data Book, 2nd. edn London: Murray;
    [Google Scholar]
  26. Stewart G. N. 1899; The changes produced by the growth of bacteria in the molecular concentration and electrical conductivity of culture media. Journal of Experimental Medicine 4:235–243 plates
    [Google Scholar]
  27. Ur A., Brown D. F. J. 1975; Monitoring of bacterial activity by impedance measurements. In New Approaches to the Identification of Microorganisms61–71 Edited by Heden C. G., Illeni T. New York: Wiley;
    [Google Scholar]
  28. Uschinski. 1903; Ueber die Veranderung einiger physikalisch-chemischer Eigenschaften der Nahr-medien unter dem Einfluss des Wachstums diverser Mikroorganismen. Centralblatt fur Bakteriologie, Abt. I 33:88–89
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-11-3055
Loading
/content/journal/micro/10.1099/00221287-131-11-3055
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error