1887

Abstract

Summary: Dibutyryl cyclic GMP, but not dibutyryl cyclic AMP, derepresses sporulation and synthesis of mycobacillin and dipicolinic acid under conditions of glucose repression in strain 8. Neither of these compounds appears to affect sporulation and synthesis of mycobacillin and dipicolinic acid in this strain under normal physiological conditions. Mutants insensitive to glucose repression were indifferent to the addition of either of the nucleotides both in the presence and in the absence of glucose. A role for dibutyryl cyclic GMP in annulling the repressing effect of glucoseon sporulation and on synthesis of mycobacillin and dipicolinic acid is thus indicated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-10-2783
1985-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/10/mic-131-10-2783.html?itemId=/content/journal/micro/10.1099/00221287-131-10-2783&mimeType=html&fmt=ahah

References

  1. Aronson A. I., Henderson E., Tincher A. 1967; Participation of lysine pathway in dipicolinic acid synthesis in Bacillus cereus T. Biochemical and Biophysical Research Communications 26:454–460
    [Google Scholar]
  2. Banerjee A. B., Bose S. K. 1969; Biosynthesis of mycobacillin, an antifungal peptide. IV. Effect of chloramphenicol isomers on biosynthesis. Acta microbiologica polonica 1:79–82
    [Google Scholar]
  3. Bernlohr R. W., Haddox M. K., Goldberg N. D. 1974; Cyclic guanosine-3',5'-monophosphate in Escherichia coli and Bacillus licheniformis. Journal of Biological Chemistry 249:4329–4331
    [Google Scholar]
  4. Bhattacharyya P. K., Bose S. K. 1969; Studies on sporulation and production of mycobacillin, an antifungal polypeptide, by Bacillus subtilis. Journal of General and Applied Microbiology 15:473–481
    [Google Scholar]
  5. Brickman E., Soll L., Beckwith J. 1973; Genetic characterization of mutations which affect catabolitc sensitive operons in Escheric hia coli, including deletions of the gene for adenyl cyclase. Journal of Bacteriology 116:582–587
    [Google Scholar]
  6. Church B. D., Halvorson H. 1959; Dependence of the heat-resistance of bacterial endospores on their dipicolinic acid content. Nature, London 183:124–125
    [Google Scholar]
  7. Cook R. W., Kalb F. V., Peace A. A., Bernlohr R. W. 1980; Is cyclic guanosine-3',5'-monophosphate a cell cycle regulator ?. Journal of Bacreriology 141:1450–1453
    [Google Scholar]
  8. Coote J. G. 1974; Comparative studies on induction of sporulation and synthesis of inducible enzymes in Bacillus subtilis. Journal of Bacteriology 120:1102–1108
    [Google Scholar]
  9. Freese E., Klofat W., Galliers E. 1970; Commitment to sporulation and induction of glucose-phosphoenol-pyru vate-transferase. Biochimicael biophysica acta 222:265–289
    [Google Scholar]
  10. Haavik H. I. 1974; Studies on the formation of bacitracin by Bacillus licheniformis: effect of glucose. Journal of General Microbiology 81:383–390
    [Google Scholar]
  11. Hanlon G. W., Hodges N. A. 1981; Requirement for glucose during production of extracellular serine protease by cultures of Bacillus licheniformis. FEMS Microbiology Leners 11:51–54
    [Google Scholar]
  12. Ide M. 1971; Adenyl cyclase of bacteria. ArchiveS of Biochemistry and Biophysics 144:262–268
    [Google Scholar]
  13. Janssen F. W., Lund A. J., Anderson L. E. 1958; Colorimetric assay for dipicolinic acid in bacterial spores. Science 127:26–27
    [Google Scholar]
  14. Majumdar S. K., Bose S.K. 1958; Mycobacillin, a new antifungal antibiotic produced by Bacillus subtilis. Nature, London 181:134–135
    [Google Scholar]
  15. Majumdar S., Das S. K., Basu S., Bose S. K. 1984; A note on isolation of spontaneous glucose-resistant mutants of Bacillus subtih. Journal of Applied Bacraiology 56:493–494
    [Google Scholar]
  16. Ohne M., Rutberg B. 1976; Repression of sporulation in Bacillus subtilis by L-malate. Journal of Bacteriology 125:453–460
    [Google Scholar]
  17. Okamura S., Izaki K., Takahashi H. 1970; Asporogcnous mutants of Bacillus subtilis. Journal of General and Applied Bacteriology 16:429–441
    [Google Scholar]
  18. Pastan I., Perlman R. L. 1970; Cyclic adenosine monophosphate in bacteria. Science 169:339–344
    [Google Scholar]
  19. Perlman R. L., Pastan I. 1969; Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochemical and Biophysirnl Research Communirntions 37:151–157
    [Google Scholar]
  20. Prival M. J., Magasanik B. 1971; Resistance to catabolite repression of histidase and proline oxidase during nitrogen limited growth of Klebsiella aerogenes. Journal of Biologirnl Chemistry 246:6288–6296
    [Google Scholar]
  21. Schaeffer P., Millet I., Aubert J. P. 1965; Catabolite repression of bacterial sporulation. Proceedings of the National Arndemy of Sciences of the United States of America 27:499–506
    [Google Scholar]
  22. Setlow P. 1973; Inability to detect cyclic-AMP in vegetative and sporulating cells or dormant spores of Bacillus megarerium. Biochemical and Biophysical Research Communicarions 52:365–372
    [Google Scholar]
  23. Setlow B., Setlow P. 1978; Levels of cyclic-GMP in dormant, germinated, and outgrowing spores and growing and sporulating cells of Bacillus megaterium. Journal of Bacteriology 136:433–436
    [Google Scholar]
  24. Ullman A. 1974; Are cyclic AMP effects related to real physiological phenomena?. Biochemical and Biophysical Research Communirntions 57:348–352
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-10-2783
Loading
/content/journal/micro/10.1099/00221287-131-10-2783
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error