Regulation of NAD Biosynthesis in : Expression of Gene Fusions and Identification of a Regulatory Locus Free

Abstract

Summary: Regulation of NAD biosynthesis was examined through the construction of fusions in . The (17 unit map position) and (55 units) genetic loci involved with quinolinic acid biosynthesis were both found to be regulated by the product of a locus (99 units) in a repression/derepression manner while (3 units) expression appeared constitutive at the transcriptional level. Increases in transcription directly correlated with decreases in intracellular NAD(P) levels, and kinetic studies indicated that the NAD analogue 6-aminoNAD was ineffective in repressing either or . The presence of cAMP + cAMP receptor protein was essential for the complete derepression of while no effect was evident upon . Transfer of cultures from aerobic to anaerobic conditions, however, resulted in the partial derepression of both and . Thus, there appears to be a very complex set of controls regulating NAD biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-10-2759
1985-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/10/mic-131-10-2759.html?itemId=/content/journal/micro/10.1099/00221287-131-10-2759&mimeType=html&fmt=ahah

References

  1. Bochner B. R., Ames B. N. 1982; Complete analysis of cellular nucleotides by two dimensional thin layer chromatography. Journal of Biological Chemistry 257:9759–9769
    [Google Scholar]
  2. Casadaban M. J., Cohen S. N. 1979; Lactose genes fused to exogenous promotors in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proceedings of the National Academy of Sciences of the United States of America 76:4530–4533
    [Google Scholar]
  3. Chan R. K., Botstein D., Watanabe T., Ogata Y. 1972; Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high frequency transducing lysate. Virology 50:883–898
    [Google Scholar]
  4. Chandler J. L. R., Gholson R. K. 1972; De novo biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli: excretion of quinolinic acid by mutants lacking quinolinate phosphoribosyl transferase. Journal of Bacteriology 111:98–102
    [Google Scholar]
  5. Foster J. W., Moat A. G. 1978; Mapping and characterization of the nad genes in Salmonella typhimurium LT-2. Journal of Bacteriology 133:775–779
    [Google Scholar]
  6. Foster J. W., Moat A. G. 1980; Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiological Reviews 44:83–105
    [Google Scholar]
  7. Foster J. W., Kinney D. M., Moat A. G. 1979; Pyridine nucleotide cycle of Salmonella typhimurium : isolation and characterization of pncA pncB and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. Journal of Bacteriology 137:1165–1175
    [Google Scholar]
  8. Foster J. W., Holley E. A., Mya S. 1984; NAD metabolism in Salmonella typhimurium: isolation of pyridine analogue supersensitive (pas) and pas suppressor mutants. Journal of General Microbiology 130:2873–2881
    [Google Scholar]
  9. Holley E. A., Foster J. W. 1982; Bacteriophage P22 as a vector for Mu mutagenesis in Salmonella typhimurium: isolation of nadlac and pnclac gene fusions. Journal of Bacteriology 152:959–962
    [Google Scholar]
  10. Hong J. S., Ames B. N. 1971; Localized mutagenesis of any specific small regions of the bacterial chromosome. Proceedings of the National Academy of Sciences of the United States of America 68:3158–3162
    [Google Scholar]
  11. Hughes K. T., Roth J. R. 1984; Conditionally transposition-defective derivative of Mudl (Amp Lac). Journal of Bacteriology 159:130–137
    [Google Scholar]
  12. Hughes K. T., Ladika E., Roth J. R., Olivera B. M. 1983a; An indispensable gene for NAD biosynthesis in Salmonella typhimurium. Journal of Bacteriology 155:213–221
    [Google Scholar]
  13. Hughes K. T., Cookson B. T., Ladika D., Olivera B. M., Roth J. R. 1983b; 6-Aminonicotinamide-resistant mutants of Salmonella typhimurium. Journal of Bacteriology 154:1126–1136
    [Google Scholar]
  14. Langley D., Guest J. R. 1974; Biochemical and genetic characteristics of deletion and other mutant strains of Salmonella typhimurium LT-2 lacking α-keto acid dehydrogenase complex activities. Journal of General Microbiology 82:319–335
    [Google Scholar]
  15. Lundquist R., Olivera G. M. 1973; Pyridine nucleotide metabolism in Escherichia coli. II. Niacin starvation. Journal of Biological Chemistry 248:5137–5143
    [Google Scholar]
  16. Maloy S. R., Nunn W. D. 1981; Selection for loss of tetracycline resistance by Escherichia coli. Journal of Bacteriology 145:1110–1112
    [Google Scholar]
  17. Maloy S. R., Roth J. R. 1983; Regulation of proline utilization in Salmonella typhimurium: characterization of put :: Mud(Ap, lac) operon fusions. Journal of Bacteriology 154:561–568
    [Google Scholar]
  18. Martin A., Gottschal J. C. 1976; Influence of dilution rate on NAD(P) and NAD(P)H concentrations and ratios in a Pseudomonas sp. grown in continuous culture. Journal of General Microbiology 94:333–341
    [Google Scholar]
  19. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Nasu S., Wicks F. D., Gholson R. K. 1982; l-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase. Journal of Biological Chemistry 257:626–632
    [Google Scholar]
  21. Sanderson K. E., Roth J. R. 1983; Linkage map of Salmonella typhimurium. edition , VI. Microbiological Reviews 47:410–453
    [Google Scholar]
  22. Saxton R. E., Rocha V., Rosser R. J., Andreoli A. J., Shimoyoma M., Sosska A., Chandler J. L. R., Gholson R. K. 1968; A comparative study of the regulation of nicotinamide adenine dinucleotide biosynthesis. Biochimica et hiophysica acta 156:77–84
    [Google Scholar]
  23. Schmieger H. 1971; A method for detection of phage mutants with altered transducing ability. Molecular and General Genetics 110:378–381
    [Google Scholar]
  24. Spector M. P., Hill J., Holley E. A., Foster J. W. 1985; Genetic characterization of pyridine nucleotide uptake mutants of Salmonella typhimurium. Journal of General Microbiology 131:1313–1322
    [Google Scholar]
  25. Tritz G. J., Chandler J. L. R. 1973; Recognition of a gene involved in the regulation of nicotinamide adenine dinucleotide biosynthesis. Journal of Bacteriology 114:128–136
    [Google Scholar]
  26. Vogel H. J., Bonner D. M. 1956; Acetyl ornithinase of Escherichia coli: partial purification and some properties. Journal of Biological Chemistry 93:237–244
    [Google Scholar]
  27. Wimpenny J. W. T., Firth A. 1972; Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. Journal of Bacteriology 111:24–32
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-10-2759
Loading
/content/journal/micro/10.1099/00221287-131-10-2759
Loading

Data & Media loading...

Most cited Most Cited RSS feed