1887

Abstract

Summary: Representatives of a large number of bacterial isolates that produced clearings in xylan agar medium in an earlier study were characterized in greater detail. Butyrivibrios and ruminococci predominated. Three different biotypes of , all non-cellulolytic, were identified on the basis of net acetate production or uptake, or the production of propionate. The only variable characteristic observed within the group of isolates was the ability to solubilize cellulose. In contrast, all typical isolates were cellulolytic. Other bacteria that occurred in smaller numbers belonged to the genera and

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-10-2601
1985-10-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/10/mic-131-10-2601.html?itemId=/content/journal/micro/10.1099/00221287-131-10-2601&mimeType=html&fmt=ahah

References

  1. Anon 1980 Methods of Enzymatic Food Analysis. Mannheim: Boehringer-Mannheim;
    [Google Scholar]
  2. Aspinall G. O. 1980; Chemistry of cell wall polysaccharides. In The Biochemistry of Plants 03473–500 Edited by Preiss J. London: Academic Press;
    [Google Scholar]
  3. Bryant M. P. 1959; Bacterial species of the rumen. Bacteriological Reviews 23:125–153
    [Google Scholar]
  4. Bryant M. P., Small N., Bouma C., Chu H. 1958; Bacteroides ruminicola n. sp. and Succini monas amylolytica the new genus and species. Journal of Bacteriology 76:15–23
    [Google Scholar]
  5. Conn H. J. 1951; Routine tests for the descriptive chart. Morphological and biochemical. Leaflet V. In Manual of Methods for Pure Culture Study of Bacteria, 12th edn. Edited by the Committee of Bacteriological Technic of the Society of American Bacteriologists Geneva & New York: Biotech Publications;
    [Google Scholar]
  6. Dehority B. A. 1965; Degradation and utilization of isolated hemicellulose by pure cultures of cellulolytic rumen bacteria. Journal of Bacteriology 89:1515–1520
    [Google Scholar]
  7. Dehority B. A. 1966; Characterization of several bovine rumen bacteria isolated with a xylan medium. Journal of Bacteriology 91:1724–1729
    [Google Scholar]
  8. Dehority B. A. 1973; Hemicellulose degradation by rumen bacteria. Federation Proceedings 32:1819–1825
    [Google Scholar]
  9. Greve L. C., Labavitch J. M., Stack R. J., Hungate R. E. 1984; Muralytic activities of Ruminococcus albus 8. Applied and Environmental Microbiology 47:1141–1145
    [Google Scholar]
  10. Van Gylswyk N. O. 1980; Fusobacterium polysac-charolyticum sp. nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. Journal of General Microbiology 116:157–163
    [Google Scholar]
  11. Van Gylswyk N. O., Hoffman J. P. L. 1970; Characteristics of cellulolytic cillobacteria from the rumens of sheep fed teff (Eragrostis tef) hay diets. Journal of General Microbiology 60:381–386
    [Google Scholar]
  12. Van Gylswyk N. O., Labuschagne J.P. L. 1971; Relative efficiency of pure cultures of different species of cellulolytic rumen bacteria in solubilizing cellulose in vitro. Journal of General Microbiology 66:109–113
    [Google Scholar]
  13. Van Gylswyk N. O., Roche C. E. G. 1970; Characteristics of ruminococcus and cellulolytic butyrivibrio species from the rumens of sheep fed differently supplemented teff (Eragrostis tel) hay diets. Journal of General Microbiology 64:11–17
    [Google Scholar]
  14. Van Gylswyk N. O., Schwartz H. M. 1984; Microbial ecology of the rumen of animals fed highfibre diets. In Herbimre Nutrition in the Subtropics and Tropics pp 359–377 Edited by Gilchrist F. M. C., Mackie R. I. Craighall, S. Africa: The Science Press;
    [Google Scholar]
  15. Van Gylswyk N. O., Van Der Toorn J. J. T. K. 1985; Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. International Journal of Systematic Bacteriology 35: (in the Press)
    [Google Scholar]
  16. Henning P. A. 1979; Examination of methods for enumerating hemicellulose-utilizing bacteria in the rumen. Applied and Enl'ironmental Microbiology 38:13–17
    [Google Scholar]
  17. Holdeman L. V., Moore W. E. C. 1974; New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. International Journal of Systematic Bacteriology 24:260–277
    [Google Scholar]
  18. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual, 4th edn. Blacksburg, Virginia: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  19. Howard B. H., Jones G., Purdom M. R. 1960; The pentosanases of some rumen bacteria. Biochemical Journal 74:173–182
    [Google Scholar]
  20. Hungate R. E. 1950; The anaerobic mesophilic cellulolytic bacteria. Bacteriological Reriews 14:01–49
    [Google Scholar]
  21. Kistner A. 1965; Possible factors influencing the balance of different species of cellulolytic bacteria in the rumen. In Physiology of Digestion in the Ruminant,419–432 Edited by Dougherty R. W., Allen R. S., Burroughs W., Jacobsen N. L., McGilliard A. D. Washington: Butterworths;
    [Google Scholar]
  22. Kock S. G., Kistner A. 1969; Extent of solubilization of 1X-cellulose and hemicellulose of lowprotein teff hay by pure cultures of cellulolytic rumen bacteria. Journal of General Microbiology 55:459–462
    [Google Scholar]
  23. Van Der Linden Y., Van Gylswyk N. O., Schwartz H. M. 1984; Influence of supplementation of corn stover with corn grain on the fibrolytic bacteria in the rumen of sheep and their relation to the intake and digestion of fiber. Journal of Animal Science 59:772–783
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biologr 03:208–218
    [Google Scholar]
  25. Meyer S. A., Schleifer K. H. 1975; Rapid procedure for the approximate determination of the deoxyribonucleic acid base composition of micro cocci, staphylococci, and other bacteria. International Journal of Systematic Bacteriology 25:383–385
    [Google Scholar]
  26. Moore W. E. C., Holdeman L. V. 1974; Genus Fusobacterium. In Bergey’s Manual of Determinative Bacteriology,, 8th edn.404–416 Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Morris E. J., Van Gylswyk N. O. 1980; Comparison of the action of rumen bacteria on cell walls from Eragrostis tef. Journal of Agricultural Science 95:313–323
    [Google Scholar]
  28. Paster B. J., Canale-Parola E. 1982; Physiological diversity of rumen spirochetes. Applied and Enrironmental Microhiology 43:686–693
    [Google Scholar]
  29. Prins R. A., Van Vugt F., Hungate R. E., Van Vorstenbosch C. J. A.H. V. 1972; A comparison of strains of Euhacterium cellulosolvens from the rumen. Antonie rnn Leeuwenhoek 38:153–161
    [Google Scholar]
  30. Reddy C. A., Bryant M. P. 1977; Deoxyribonucleic acid base composition of certain species of the genus Bacteroides. Canadian Journal of Microbiology 23:1252–1256
    [Google Scholar]
  31. Shane B. S., Gouws L., Kistner A. 1969; Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay. Journal of General Microbiology 55:445–457
    [Google Scholar]
  32. Stanton T. B., Canale-Parola E. 1980; Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Archives of Microbiology 127:145–156
    [Google Scholar]
  33. Ulitzur S. 1972; Rapid determination of DNA base composition by ultraviolet spectroscopy. Biochimica et biophysica acta 272:01–11
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-10-2601
Loading
/content/journal/micro/10.1099/00221287-131-10-2601
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error