1887

Abstract

Twelve mutants blocked in chloramphenicol biosynthesis were isolated. Two of these (Cml-1 and Cml-12) were apparently blocked in the conversion of chorismic acid to -aminophenylalanine and three (Cml-4, Cml-5 and Cml-8) accumulated -aminophenyl-alanine and may have been blocked in the hydroxylation reaction that converted this intermediate to -aminophenylserine. One mutant (Cml-2) accumulated --1--nitro-phenyl-2-propionamido-1,3-propanediol and --1--nitrophenyl-2-isobutyramido-1,3-propanediol, indicating that chlorination of the α--acyl group of chloramphenicol was blocked. The remaining six strains did not excrete any detectable chloramphenicol pathway intermediates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-1-97
1985-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/1/mic-131-1-97.html?itemId=/content/journal/micro/10.1099/00221287-131-1-97&mimeType=html&fmt=ahah

References

  1. Aguilar A., Hopwood D. A. 1982; Determination of methylenomycin A synthesis by the pSV1 plasmid from Streptomyces violaceus-ruber SANK 95570. Journal of General Microbiology 128:1893–1901
    [Google Scholar]
  2. Ahmed Z. U., Vining L. C. 1983; Evidence for a chromosomal location of the genes coding for chloramphenicol production in Streptomyces venezuelae. Journal of Bacteriology 154:239–244
    [Google Scholar]
  3. Akagawa H., Okanishi M., Umezawa H. 1979; Genetic and biochemical studies of chloramphenicol non-producing mutants of Streptomyces venezuelae carrying a plasmid. Journal of Antibiotics 32:610–620
    [Google Scholar]
  4. Baltz R. H., Seno E. T., Stonesifer J., Matsu-shima P., Wild G. M. 1981; Genetics and biochemistry of tylosin production by Streptomyces fradiae. In Microbiology – 1981371–375 Schlessinger D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Chatterjee S., Vining L. C., Westlake D. W. S. 1983; Nutritional requirements for chloramphenicol biosynthesis by Streptomyces venezuelae. Canadian Journal of Microbiology 29:247–253
    [Google Scholar]
  6. Doull J. L., Vining L. C., Stuttard C. 1983; A cryptic plasmid in the chloramphenicol-producing actinomycete, Streptomyces phaeochromogenes. FEMS Microbiology Letters 16:349–352
    [Google Scholar]
  7. Hayakawa T., Tanaka T., Sakaguchi K., Otake N., Yonehara H. 1979; A linear plasmid-like DNA in Streptomyces sp. producing lankacidin group antibiotics. Journal of General and Applied Microbiology 25:255–260
    [Google Scholar]
  8. Jones A., Westlake D. W. S. 1974; Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis. Canadian Journal of Microbiology 20:1599–1611
    [Google Scholar]
  9. Kirby R., Hopwood D. A. 1977; Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). Journal of General Microbiology 98:239–252
    [Google Scholar]
  10. Levine J., Fischbach H. 1951; The chemical determination of chloramphenicol in biological materials. Antibiotics and Chemotherapy 1:59–62
    [Google Scholar]
  11. Malik V. S., Vining L. C. 1970; Metabolism of chloramphenicol by the producing organism. Canadian Journal of Microbiology 16:173–179
    [Google Scholar]
  12. McGrath R., Vining L. C., Sala F., Westlake D. W. S. 1968; Biosynthesis of chloramphenicol. III. Phenylpropanoid intermediates. Canadian Journal of Biochemistry 46:587–594
    [Google Scholar]
  13. Michelson A. M., Vining L. C. 1978; Loss of chloramphenicol production in strains of Streptomyces species 3022a treated with acriflavine and ethidium bromide. Canadian Journal of Microbiology 24:662–669
    [Google Scholar]
  14. Ochi K., Katz E. 1980; Genetic analysis of the actinomycin-producing determinants (plasmid) in Streptomyces parvulus using the protoplast fusion technique. Canadian Journal of Microbiology 26:1460–1464
    [Google Scholar]
  15. Schrempf H. 1983; Reiterated sequences within the genome of Streptomyces. In Genetic Rearrangement, Fifth John Innes Symposium131–142 Chater K.F., Cullis C.A., Hopwood D.A., Johnston A.W.B., Woolhouse H. W. London: Croom Helm;
    [Google Scholar]
  16. Shirahata K., Hayashi T., Deguchi T., Suzuki T., Matsubara I. 1972; The structures of corynecins; chloramphenicol analogues produced by a n-paraffin-grown bacterium. Agricultural and Biological Chemistry 36:2229–2232
    [Google Scholar]
  17. Simonsen J. N., Paramasigamani K., Vining L. C., McInnes A. C., Walter J. A., Wright J. L. C. 1978; Biosynthesis of chloramphenicol: studies on the origin of the dichloroacetyl moiety. Canadian Journal of Microbiology 24:136–142
    [Google Scholar]
  18. Stratton C. D., Rebstock M. C. 1963; A new metabolite of Streptomyces venezuelae d-threo-l-p-aminophenyl-2-dichloroacetamido-1,3-propanediol. Achives of Biochemistry and Biophysics 103:159–163
    [Google Scholar]
  19. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. Journal of General Microbiology 128:115–121
    [Google Scholar]
  20. Vaněk Z., Cudlín J., Blumauerová M., Hošt̆álek Z. 1971; How many genes are required for the synthesis of chlortetracycline?. Folia Microbiologica 16:225–240
    [Google Scholar]
  21. Wat C.-K., Malik V. S., Vining L. C. 1971; Isolation of 2(S)-dichloroacetamido-3-(p-acetamido-phenyl)propan-l-ol from a chloramphenicol-producing Streptomyces species. Canadian Journal of Chemistry 49:3653–3656
    [Google Scholar]
  22. Weber J. M., Wierman C. K., Hutchinson C. R., Wang Y.-G., Davies J. 1982; Genetics and biochemistry of erythromycin production in Streptomyces erythreus NRRL2338. Trends in Antibiotic Research. Genetics, Biosyntheses, Actions and New Substances55–64 Umezawa H., Demain A. L., Hata T., Hutchison C. R. Tokyo, Japan: Antibiotics Research Association;
    [Google Scholar]
  23. Westlake D. W. S., Vining L. C. 1969; Biosynthesis of chloramphenicol. Biotechnology and Bioengineering 11:1125–1134
    [Google Scholar]
  24. Xue Y., Dong K., Li M., Zhu Y. 1978; Genetic evidence of the presence of plasmid in Streptomyces griseus and its relationship with the biosynthesis of streptomycin. Ada microbiologica sinica 18:195–201
    [Google Scholar]
  25. Zippel M., Neigenfind M., Noack D. 1983; Possible plasmid involvement in turimycin production in Streptomyces hygroscopicus. Molecular and General Genetics 192:471–476
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-1-97
Loading
/content/journal/micro/10.1099/00221287-131-1-97
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error