1887

Abstract

Four major proteins with molecular weights of 78000, 37000, 34000 and 20000 were present in the envelope of when cultured at a high specific growth rate. However, at lower growth rates, the protein content and composition of the envelope depended on the imposed nutrient limitation. Under potassium-, carbon-, sulphur- and phosphorus-limited conditions, derepression of synthesis of limitation-specific proteins was observed, their apparent molecular weights being 90000, 48000, 41000 and 36000, respectively. Nitrogen-limited cells had no additional proteins. For a particular limiting nutrient, expression of the limitation-specific proteins was independent of the chemical or physical form in which the nutrient was supplied. Under potassium or sulphur limitation the specific proteins were present maximally at the lowest imposed growth rate, whereas under carbon limitation a maximum expression of these proteins was found at moderate growth rates. It is concluded that limitation-specific proteins which are associated with the outer membrane function in the uptake of limiting nutrients or, possibly, limitation-releasing compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-9-2347
1984-09-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/9/mic-130-9-2347.html?itemId=/content/journal/micro/10.1099/00221287-130-9-2347&mimeType=html&fmt=ahah

References

  1. Argast M., Boos W. 1980; Co-regulation in Escherichia coli of a novel transport system for sn- glycerol-3-phosphate and outer membrane protein Ic (e, E) with alkaline phosphatase and phosphatebinding protein. Journal of Bacteriology 143:142–150
    [Google Scholar]
  2. Benz R., Hancock R. E. W. 1981; Properties of the large ion permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes. Biochimica et biophysica acta 646:298–308
    [Google Scholar]
  3. Dimasi D. R., White S. C., Schnaitman C. A., Bradbeer C. 1973; Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B i 2 and the E colicins on the outer membrane of the cell envelope. Journal of Bacteriology 115:506–513
    [Google Scholar]
  4. Dirienzo J. M., Nakamura K., Inouye M. 1978; The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly and functions. Annual Review of Biochemistry 47:481–532
    [Google Scholar]
  5. Evans C. G. T, Herbert D., Tempest D. W. 1970; The continuous cultivation of microorganisms. 2. Construction of a chemostat. Methods in Microbiology 2:277–327
    [Google Scholar]
  6. Ferenci T., Schwentorat M., Ullrich S., Vilmart J. 1980; Lambda receptor in the outer membrane of Escherichia coli as a binding protein for maltodextrines and starch polysaccharides. Journal of Bacteriology 142:521–526
    [Google Scholar]
  7. Hancock R. E. W, Carey A. M. 1980; Protein D1 - a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa. FEMS Microbiology Letters 8:105–109
    [Google Scholar]
  8. Hancock R. E. W, Hantke K., Braun V. 1976; Iron transport in Escherichia coli K.-12: involvement of the colicin B receptor and of a citrate-inducible protein. Journal of Bacteriology 127:1370–1375
    [Google Scholar]
  9. Hancock R. E. W, Decad G. M., Nikaido H. 1979; Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PAOl. Biochimica et biophysica acta 554:323–331
    [Google Scholar]
  10. Hancock R. E. W, Poole K., Benz R. 1982; Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. Journal of Bacteriology 150:730–738
    [Google Scholar]
  11. Hantke K. 1976; Phage T6-colicin K receptor and nucleoside transport in Escherichia coli. FEBS Letters 70:109–112
    [Google Scholar]
  12. Heuzenroeder M. W., Reeves P. 1981; The tsx protein of Escherichia coli can act as a pore for amino acids. Journal of Bacteriology 147:1113–1116
    [Google Scholar]
  13. Hofstra H., Dankert J. 1979; Antigenic crossreactivity of major outer membrane proteins in Enterobacteriaceae species. Journal of General Microbiology 111:293–302
    [Google Scholar]
  14. Hofstra H., Van TOL M. J. D, Dankert J. 1980; Cross-reactivity of major outer membrane proteins of Enterobacteriaceae, studied by crossed immunoelectrophoresis. Journal of Bacteriology 143:328–337
    [Google Scholar]
  15. Hueting S., De LANGE T., Tempest D. W. 1979; Energy requirement of maintenance of the transmembrane potassium gradient in Klebsiella aero- genes NCTC 418: A continuous culture study. Archives of Microbiology 123:183–188
    [Google Scholar]
  16. Lugtenberg B., Meijers J., Peters R., Van DER HOEK P., Van ALPHEN L. 1975; Electrophoretic resolution of the major outer membrane protein of Escherichia coli K12 into four bands. FEBS Letters 58:254–258
    [Google Scholar]
  17. Nakae T. 1976; Outer membrane of Salmonella. Isolation of a protein complex that produces transmembrane channels. Journal of Biological Chemistry 251:2176–2178
    [Google Scholar]
  18. Nakae T., Ishii J. 1980; Permeability properties of Escherichia coli outer membrane containing poreforming proteins: comparison between lambda receptor protein and porin for saccharide permeation. Journal of Bacteriology 142:735–740
    [Google Scholar]
  19. Neijssel O. M., Hueting S., Crabbendam K. J., Tempest D. W. 1975; Dual pathways of glycerol assimilation in Klebsiella aero genes NCIB 418. Their regulation and possible functional significance. Archives of Microbiology 104:83–87
    [Google Scholar]
  20. Nikaido H., Nakae T. 1979; The outer membrane of Gram-negative bacteria. Advances in Microbial Physiology 20:163–250
    [Google Scholar]
  21. Nikaido H., Luckey M., Rosenberg E. Y. 1980; Nonspecific and specific diffusion channels in the outer membrane of Escherichia coli. Journal of Supra- molecular Structure 13:305–313
    [Google Scholar]
  22. Nikaido H., Rosenberg E. Y., Foulds J. 1983; Porin channels in Escherichia coli: Studies with beta- lactams in intact cells. Journal of Bacteriology 153:232–240
    [Google Scholar]
  23. Overbeeke N., Lugtenberg B. 1980; Expression of outer membrane protein e (PhoE protein) of Escherichia coli K12 by phosphate limitation. FEBS Letters 112:229–232
    [Google Scholar]
  24. Overbeeke N., Lugtenberg B. 1982; Recognition site for phosphorus-containing compounds and other negatively charged solutes on the PhoE protein pore of the outer membrane of Escherichia coli K12. European Journal of Biochemistry 26:113–118
    [Google Scholar]
  25. Robinson A., Tempest D. W. 1973; Phenotypic variability of the envelope proteins of Klebsiella aerogenes. Journal of General Microbiology 78:361–370
    [Google Scholar]
  26. Schnaitman C. A. 1971; Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X- 100. Journal of Bacteriology 108:545–552
    [Google Scholar]
  27. Sigel S. P., Payne S. M. 1982; Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae. Journal of Bacteriology 150:148–155
    [Google Scholar]
  28. Spratt B. G. 1977; Properties of the penicillinbinding proteins of Escherichia coli K-12. European Journal of Biochemistry 72:341–352
    [Google Scholar]
  29. Sterkenburg A., Wouters J. T. M. 1981; Phenotypic variability of the sensitivity to cycloserine of Klebsiella aerogenes NCTC 418, growing in chemostat culture. Journal of General Microbiology 124:29–34
    [Google Scholar]
  30. Szmelcman S., Hofnung M. 1976; Maltose transport in Escherichia coli K12: Involvement of the bacteriophage lambda receptor. Journal of Bacteriology 124:112–118
    [Google Scholar]
  31. Tempest D. W., Dicks J. W., Hunter J. R. 1966; The interrelationship between potassium, magnesium and phosphorus in potassium-limited chemostat cultures of Aerobacter aerogenes. Journal of General Microbiology 45:135–146
    [Google Scholar]
  32. Tempest D. W., Meers J. L., Brown C. M. 1970; Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochemical Journal 117:405–407
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-9-2347
Loading
/content/journal/micro/10.1099/00221287-130-9-2347
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error