1887

Abstract

The kinetics of mouse salmonellosis caused by was studied in mice preinjected with the IgM or IgG fraction prepared from a rabbit anti- serum. Compared on the basis of antibody units determined by an enzyme immunoassay, IgM was ten times more effective than IgG in promoting removal of the bacteria from blood after intravenous (IV) injection and their uptake in the reticuloendothelial system (RES). The subsequent killing of the bacteria was, however, only minor, in accord with the negligible protective effect of serum antibodies in IV infection. IgM was over 1000 times more effective than IgG in promoting killing of the bacteria after intraperitoneal (IP) challenge. Neither antibody had an effect on the multiplication of the bacteria in the RES. The protective action of antibody was thus almost entirely mediated by peritoneal-cavity cells acting in the very early phase of infection. The greater effect of IgM is suggested to be a special feature of infections, connected with the capacity of these bacteria for intracellular survival and multiplication in the RES.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-9-2277
1984-09-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/9/mic-130-9-2277.html?itemId=/content/journal/micro/10.1099/00221287-130-9-2277&mimeType=html&fmt=ahah

References

  1. Akeda H., Mitsuyama M., Tatsukawa K., Nomoto K., Takeya K. 1981; The synergistic contribution of macrophages and antibody to protection against Salmonella typhimurium during the early phase of infection. Journal of General Microbiology 123:209–214
    [Google Scholar]
  2. Bianco C., Griffin F. M.JR Silverstbin S. C. 1975; Studies of the macrophage complement receptor. Alteration of receptor function upon macrophage activation. Journal of Experimental Medicine 141:1278–1283
    [Google Scholar]
  3. Biozzi G. 1972; Differential susceptibility of high and low antibody producing mouse lines to infection and tumour transplantation. In Genetic Control of Immune Responsiveness pp. 317–327 Mcdevitt H. O., Landy M. Edited by New York: Academic Press;
    [Google Scholar]
  4. Blanden R. V., Mackaness G. B., Collins F. M. 1966; Mechanisms of acquired resistance in mouse typhoid. Journal of Experimental Medicine 124:585–600
    [Google Scholar]
  5. Borsos T., Rapp H. J. 1965; Complement fixation on cell surfaces by 19S and 7S antibodies. Science 150:505–506
    [Google Scholar]
  6. Briles D. E., Lehmayer J., Forman C. 1981; Phagocytosis and killing of Salmonella typhimurium by peritoneal exudate cells. Infection and Immunity 33:380–388
    [Google Scholar]
  7. Collins F. M. 1969; Effect of immune mouse serum on the growth of Salmonella enteritidis in non- vaccinated mice challenged by various routes. Journal of Bacteriology 97:667–675
    [Google Scholar]
  8. Collins F. M., Mackaness C. B., Blanden R. V. 1966; Infection-immunity in experimental salmonellosis. Journal of Experimental Medicine 124:601–619
    [Google Scholar]
  9. Frank M. M., Schreiber A. D., Atkinson J. P. 1975; Studies of the interaction of antibody complement, and macrophages in the immune clearance of erythrocytes. In The Phagocytic Cell in Host Resistance pp. 101–115 Bellanti J. A., Dayton D. H. Edited by New York: Raven Press;
    [Google Scholar]
  10. Fraker P. J., Speck J. C.JR 1978; Protein and cell membrane iodinations with a sparingly soluble cloroamide, 1,3,4,6-tetrachloro-3a,6oc,diphenylgly- coluril. Biochemical and Biophysical Research Communications 80:849–853
    [Google Scholar]
  11. Hoiseth S. K., Stocker B. A. D. 1981; Aromatic- dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature; London: 291238–239
    [Google Scholar]
  12. Hormaeche C. E., Brok J., Pettifor R. 1980; Natural resistance to mouse-typhoid : Possible role of the macrophage. In Genetic Control of Natural Resistance to Infection and Malignancy pp. 121–131 Skamene E., Kongshavn P. A. L, Landy M. Edited by New York: Academic Press;
    [Google Scholar]
  13. Jenkin C. R., Rowley D. 1963; Basis for immunity to typhoid in mice and the question of ‘cellular immunity’. Bacteriological Reviews 27:391–404
    [Google Scholar]
  14. Jenkin C. R., Rowley D. 1965; Partial purification of the ‘protective’ antigen of Salmonella typhimurium and its distribution amongst various strains of bacteria. Australian Journal of Experimental Biology and Medical Sciences 43:65–71
    [Google Scholar]
  15. Krishnapillai V., Karthigasu K. 1969; Salmonella abony-Salmonella typhimurium recombinant nonvirulent for the mouse. Journal of Bacteriology 97:1343–1351
    [Google Scholar]
  16. Levine M. M., Hornick R. B. 1981; Immunology of enteric pathogens, Salmonella, Shigella, and Escherichia coli. In Immunology of Human Infection pp. 249–290 Nahmias A. J., O'Reilly R. J. Edited by New York: Plenum;
    [Google Scholar]
  17. Liang-TAKASAKI C.-J., MäKELä P. H., Leive L. 1982; Phagocytosis of bacteria by macrophages: changing the carbohydrate of lipopolysaccharide alters interaction with complement and macrophages. Journal of Immunology 128:1229–1233
    [Google Scholar]
  18. Liang-TAKASAKI C.-J., Saxén H., MäKELä P. H., Leive L. 1983a; Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of Salmonellae. Infection and Immunity 41:563–569
    [Google Scholar]
  19. Liang-TAKASAKI C.-J., Grossman N., Leive L. 1983b; Salmonellae activate complement differentially via the alternative pathway depending on the structure of their lipopolysaccharide O-antigen. Journal of Immunology 130:1867–1870
    [Google Scholar]
  20. Mackaness G. B., Blanden R. V., Collins F. M. 1966; Host-parasite relations in mouse typhoid. Journal of Experimental Medicine 124:573–583
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics. New York; Cold Spring Harbor Laboratory:
    [Google Scholar]
  22. O’BRIEN A. D., Scher I., Campbell G. H., Mac-DERMOTT R. P., Formal S. B. 1979a; Susceptibility of CBA/N mice to infection with Salmonella typhimurium: Influence of the X-linked gene controlling B lymphocyte function. Journal of Immunology 123:720–740
    [Google Scholar]
  23. O’BRIEN A. D., Scher I., Formal S. B. 1979b; Effect of silica on the innate resistance of inbred mice to Salmonella typhimurium infection. Infection and Immunity 25:513–520
    [Google Scholar]
  24. ØRSKOV J., Moltke O. 1928; Studien fiber den Infektionsmechanismus bei verschiedenen Paraty- phus-Infektionen an weissen Mausen. Zeitschriftfur Immunitatsforschung 59:357–405
    [Google Scholar]
  25. ØRSKOV J., Jensen K. A., Kobayashi K. 1928; Studien liber die Bedeurung der Breslaumfelstron der Miuse speziell mit Rucksicht auf die Bedeutung des Retikuloendothelialgewebes. Zeitschrift fur Immunitatsforschung 55:34–68
    [Google Scholar]
  26. Plant J. E., Glynn A. A. 1976; Genetics of resistance to infection with Salmonella typhimurium in mice. Journal of Infectious Diseases 133:72–78
    [Google Scholar]
  27. Roantree R. J. 1967; Salmonella O antigen and virulence. Annual Review of Microbiology 21:443–446
    [Google Scholar]
  28. Robbins J. B., Kenny K., Suter E. 1965; The isolation and biological activities of rabbit IgM- and IgG-anti-Salmonella typhimurium antibodies. Journal of Experimental Medicine 122:385–401
    [Google Scholar]
  29. Rowley D., Turner K. J. 1966; Number of molecules of antibody required to promote phagocytosis of one bacterium. Nature; London: 1496–497
    [Google Scholar]
  30. Saxén H., MäKELä O. 1982; The protective capacity of immune sera in experimental mouse salmonellosis is mainly due to IgM antibodies. Immunology Letters 5:267–272
    [Google Scholar]
  31. Saxén H., Hovi M., MäKELä P. H. 1984a; Lipopolysaccharide and mouse virulence of Salmonella: O antigen affects phagocytic killing and virulence after intraperitoneal but not intravenous challenge. FEMS Letters (in the Press)
    [Google Scholar]
  32. Saxén H., Makela O., Svenson S. B. 1984b; Isotype of protective anti-Salmonella antibodies. Infection and Immunity (in the Press)
    [Google Scholar]
  33. Valtonen V. V. 1970; Mouse virulence of Salmonella strains: the effect of different smooth-type O-side chains. Journal of General Microbiology 64:255–268
    [Google Scholar]
  34. Webster L. T. 1937; Inheritance of resistance of mice to bacterial and neurotropic virus infections. Journal of Experimental Medicine 65:261–274
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-9-2277
Loading
/content/journal/micro/10.1099/00221287-130-9-2277
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error