1887

Abstract

Aminoxy analogues of di- and tripeptides in which the peptide linkage is replaced by -CO-NHO-, either as an - or -2-aminoxypropionic acid ( or -OAla) residue, have been examined for antibacterial activity and for uptake into Isolation of analogue-resistant mutants and cross-resistance tests with peptide-transport mutants indicate that all three peptide permeases can transport these backbone-modified analogues. A number of mutants with defects in particular intracellular peptidases show decreased sensitivity to a range of these analogues, allowing identification of the enzymes responsible for their cleavage and confirming that hydrolysis is essential for their toxicity. Ala-OAla is a bacteriostatic agent that inhibits nucleic acid and protein synthesis within 1 min of being added to an exponentially growing culture. In crude extracts Ala-OAla inhibits transaminase activity but only after liberation of OAla by endogenous peptidases. These antibacterial agents illustrate an approach to drug targeting in which peptide carriers are used to promote uptake of essentially impermeant toxic moieties.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-9-2253
1984-09-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/9/mic-130-9-2253.html?itemId=/content/journal/micro/10.1099/00221287-130-9-2253&mimeType=html&fmt=ahah

References

  1. Alves R. A., Payne J. W. 1980; The number and nature of the peptide-transport systems in Escherichia coli: characterization of specific transport mutants. Biochemical Society Transactions 8:704–705.
    [Google Scholar]
  2. Ames B. N., Ames G. F. L, Young J. D., Isuchiya D., Lecocq J. 1973; Illicit Transport, the oligopeptide permease. Proceedings of the National Academy of Sciences of the United States of America 70:456–458
    [Google Scholar]
  3. Atherton F. R., Hall M. J., Hassall C. H., Lambert R. W., Lloyd W. J., Ringrose P. S. 1979; Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrobial Agents and Chemotherapy 15:696–705
    [Google Scholar]
  4. Atherton F. R., Hall M. J., Hassall C. H., Holmes S. W., Lambert R. W., Lloyd W. J., Ringrose P. S. 1980; Phosphonopeptide antibacterial agents related to alafosfalin: design, synthesis and structure-activity relationships. Antimicrobial Agents and Chemotherapy 18:897–905
    [Google Scholar]
  5. Barak Z., Gilvarg C. 1974; Triomithine resistant strains of Escherichia coli: Isolation, definition and genetic studies. Journal of Biological Chemistry 249:143–148
    [Google Scholar]
  6. Barak Z., Gilvarg C. 1975; Specialized peptide transport system in Escherichia coli. . Journal of Bacteriology 122:1200–1207
    [Google Scholar]
  7. Boehm Z., Kingsbury W. D., Perry D., Gilvarg C. 1983; The use of cysteinyl peptides to effect portage transport of sulfhydryl-containing compounds in Escherichia coli. . Journal of Biological Chemistry 258:14850–14855
    [Google Scholar]
  8. Briggs M. T., Morley J. S. 1979; Aminoxy-analogues of aspartame and gastrin C-terminal tetrapeptide amide. Journal of the Chemical Society, Perkin I:2138–2143
    [Google Scholar]
  9. Coukell M. B., Yanofsky C. 1971; Influence of chromosome structure on the frequency of tonBtrp deletions in Escherichia coli. . Journal of Bacteriology 105:864–872
    [Google Scholar]
  10. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60:17–28
    [Google Scholar]
  11. Deutch C. E., Soffer R. L. 1978; Escherichia coli Mutants defective in dipeptidyl carboxypeptidase. Proceedings of the National Academy of Sciences of the United States of America 75:5998–6001
    [Google Scholar]
  12. Diddens H., Zahner H., Kraas E., Gohring W., Jung G. 1976; On the transport of tripeptide antibiotics in bacteria. European Journal of Biochemistry 66:11–23
    [Google Scholar]
  13. Fickel T. E., Gilvarg C. 1973; Transport of impermeant substances in Escherichia coli by way of the oligopeptide permease. Nature New Biology 241:161–163
    [Google Scholar]
  14. Hermsdorf C. L., Simmonds S. 1980; Role of peptidases in utilization and transport of peptides by bacteria. In Microorganisms and Nitrogen Sources pp. 301–334 Payne J. W. Edited by Chichester & New York: John Wiley;
    [Google Scholar]
  15. John R. A., Charteris A., Fowler L. J. 1978; The reaction of amino-oxyacetate with pyridoxal phosphate-dependent enzymes. Biochemical Journal 171:771–779
    [Google Scholar]
  16. Kisfaludy L., Low M., Dévényi T. 1971; Enzymatic degradation of peptides containing α-aminooxycarboxylic acids. Acta biochimica et biophy-sica Academiae scientiarum hungaricae 6:393–403
    [Google Scholar]
  17. Kisfaludy L., Low M., Dancsi L., Patthy A., Nyeki O., Sarkozi M. 1972; Alfa-aminooxy acids and derivatives. In Peptides 1972 pp. 409–415 Hanson H., Jakubke H. D. Edited by Amsterdam & New York: North Holland/Elsevier;
    [Google Scholar]
  18. Lenny A. B., Margolin P. 1980; Locations of the opp and supX genes of Salmonella typhimurium and Escherichia coli. . Journal of Bacteriology 143:747–752
    [Google Scholar]
  19. Losick R., Gilvarg C. 1966; Effect of α-acetylation on utilization of lysine oligopeptides in Escherichia coli. . Journal of Biological Chemistry 241:2340–2346
    [Google Scholar]
  20. Matthews D. M., Payne J. W. 1975; Occurrence and biological activities of peptides. In Peptide Transport in Protein Nutrition pp. 428–429 Matthews D. M., Payne J. W. Edited by Oxford & Amsterdam: North Holland/Elsevier;
    [Google Scholar]
  21. Matthews D. M., Payne J. W. 1980; Transmembrane transport of small peptides. Current Topics in Membranes and Transport 14:331–425
    [Google Scholar]
  22. Mchugh G. L., Miller C. G. 1974; Isolation and characterization of proline peptidase mutants of Salmonella typhimurium. . Journal of Bacteriology 120:364–371
    [Google Scholar]
  23. Miller C. G., Green L. 1983; Degradation of proline peptides in peptidase-deficient strains of Salmonella typhimurium. . Journal of Bacteriology 153:350–356
    [Google Scholar]
  24. Miller C. G., Mackinnon K. 1974; Peptidase mutants of Salmonella typhimurium. . Journal of Bacteriology 120:355–363
    [Google Scholar]
  25. Miller C. G., Schwartz G. 1978; Peptidase deficient mutants of Escherichia coli. . Journal of Bacteriology 135:603–611
    [Google Scholar]
  26. Miller J. H. 1972 Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Morley J. S., Hennessey T. D., Payne J. W. 1983a; Backbone modified analogues of small peptides: transport and antibacterial activity. Biochemical Society Transactions 11:798–800
    [Google Scholar]
  28. Morley J. S., Payne J. W., Hennessey T. D. 1983b; Antibacterial activity and uptake into Escherichia coli of backbone-modified analogues of small peptides. Journal of General Microbiology 129:3701–3708
    [Google Scholar]
  29. Naider F., Becker J. M. 1975; Multiplicity of oligopeptide transport systems in Escherichia coli. . Journal of Bacteriology 122:1208–1215
    [Google Scholar]
  30. Payne J. W. 1968; Oligopeptide transport in Escherichia coli: specificity with respect to side chain and distinction from dipeptide transport. Journal of Biological Chemistry 243:3395–3403
    [Google Scholar]
  31. Payne J. W. 1980; Transport and utilization of peptides by bacteria. In Microorganisms and Nitrogen Sources pp. 211–256 Payne J. W. Edited by Chichester & New York: John Wiley;
    [Google Scholar]
  32. Payne J. W. 1983; Peptide transport in bacteria: methods, mutants and energy coupling. Biochemical Society Transactions 11:794–798
    [Google Scholar]
  33. Ringrose P. S. 1980; Peptides as antimicrobial agents. In Microorganisms and Nitrogen Sources pp. 641–692 Payne J. W. Edited by Chichester & New York: John Wiley;
    [Google Scholar]
  34. Roth J. R. 1970; Genetic techniques in studies of bacterial metabolism. Methods in Enzymology 17:135
    [Google Scholar]
  35. Schon I., Kisfaludy L., Nafradi J., Varga L., Varro V. 1978; Pentagastrin analogs containing α-aminooxy acids. III. Biological Studies and structure-activity relationships. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 359:917–922
    [Google Scholar]
  36. Vimr E. R., Miller C. G. 1983; Dipeptidyl carboxypeptidase-deficient mutants of Salmonella typhimurium. . Journal of Bacteriology 153:1252–1258
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-9-2253
Loading
/content/journal/micro/10.1099/00221287-130-9-2253
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error