Chloroperoxidases from (= ) Cultures: Glycoproteins with Variable Carbohydrate Content and Isoenzymic Forms Free

Abstract

Twenty-six fungal cultures, including ten (= ) cultures and five other capnodiaceous fungi, were examined for extracellular chloroperoxidase production on four growth media. Only the cultures produced enzyme activity and enzyme production was highest on growth in a phytone medium. Chloroperoxidase was partly purified from the ten cultures. All preparations were glycoproteins, with different carbohydrate content. The absorption spectra of the ten samples were indistinguishable and this was reflected in similar Rz ( / ) values. SDS-PAGE revealed two major bands of protein in all preparations but in different proportions: staining for carbohydrate confirmed these bands to be glycoproteins. PAGE at pH 3 showed each preparation to be composed of several isoenzymes and these could be grouped according to their migration patterns. Kinetic constants, where determined, and pH optima showed no differences among the ten preparations and all exhibited catalase and peroxidase activities in the same relative proportions to chlorinating activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-8-2051
1984-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/8/mic-130-8-2051.html?itemId=/content/journal/micro/10.1099/00221287-130-8-2051&mimeType=html&fmt=ahah

References

  1. Araiso T., Rutter R., Palcic M. M., Hager L. P., Dunford H. B. 1981; Kinetic analysis of compound I formation and the catalatic activity of chloroperoxidase. Canadian Journal of Biochemistry 59:233–236
    [Google Scholar]
  2. Beers R. F., Sizer I. W. 1952; A spectrophoto- metric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry 195:133–140
    [Google Scholar]
  3. Clutterbuck P. W., Mukhopadhya S. L., Oxford A. E., Raistrick H. 1940; Studies in the biochemistry of micro-organisms. 65(a) A survey of chlorine metabolism by moulds. (B) Caldariomycin, C5H8O2Cl2, a metabolic product of Caldariomyces fumago Woronichin. Biochemical Journal 34:664–677
    [Google Scholar]
  4. Cunningham L. W. 1971; Microheterogeneity and function of glycoproteins. In Glycoproteins of Blood Cells and Plasma pp. 16–67 Edited by Jamieson G. A., Greenwalt T. J. Philadelphia: Lippincott;
    [Google Scholar]
  5. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 28:350–355
    [Google Scholar]
  6. Eveleigh D. E. 1981; The microbiological production of industrial chemicals. Scientific American 245:154–178
    [Google Scholar]
  7. Fairbanks G., Steck T. L., Wallach D. H. F. 1971; Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617
    [Google Scholar]
  8. Geigert J., Neidleman S. L., Dalietos D. J., Dewitt S. K. 1983a; Haloperoxidases: enzymatic synthesis of αβ-halohydrins from gaseous alkenes. Applied and Environmental Microbiology 45:366–374
    [Google Scholar]
  9. Geigert J., Neidleman S. L., Dalietos D. J. 1983b; Novel haloperoxidase substrates alkynes and cyclopropanes. Journal of Biological Chemistry 258:2273–2277
    [Google Scholar]
  10. Geigert J., Neidleman S. L., Dalietos D. J., Dewitt S. K. 1983c; Novel haloperoxidase reaction: synthesis of dihalogenated products. Applied and Environmental Microbiology 45:1575–1581
    [Google Scholar]
  11. Hager L. P., Morris D. R., Brown F. S., Eberwein H. 1966; Chloroperoxidase. II. Utilisation of halogen ions. Journal of Biological Chemistry 241:1769–1777
    [Google Scholar]
  12. Hollenberg P. F., Hager L. P. 1973; The P-450 nature of the carbon monoxide complex of ferrous chloroperoxidase. Journal of Biological Chemistry 248:2630–2633
    [Google Scholar]
  13. Hollenberg P. F., Hager L. P. 1978; Purification of chloroperoxidase from Caldariomyces fumago. . Methods in Enzymology 52:521–529
    [Google Scholar]
  14. Hughes S. J. 1976; Sooty moulds. Mycologia 68:693–820
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:686–685
    [Google Scholar]
  16. Lambeir A.-M., Dunford H. B., Pickard M. A. 1983; Kinetics of cyanide binding to chloroperoxidase in the presence of nitrate: detection of the influence of a heme-linked acid group by shift of the apparent pKa value. Journal of Inorganic Biochemistry 19:291–300
    [Google Scholar]
  17. Morris D. R., Hager L. P. 1966; Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. Journal of Biological Chemistry 241:1763–1768
    [Google Scholar]
  18. Neidleman S. L., Geigert J. 1983; The enzymatic synthesis of heterogeneous dihalide derivatives: a unique biocatalytic discovery. Trends in Biotechnology 1:21–25
    [Google Scholar]
  19. Palcic M. M., Rutter R., Araiso T., Hager P. P., Dunford H. B. 1980; Spectrum of chloroperoxi- dase compound I. Biochemical and Biophysical Research Communications 94:1123–1127
    [Google Scholar]
  20. Pickard M. A. 1981; A defined growth medium for the production of chloroperoxidase by Caldariomyces fumago. . Canadian Journal of Microbiology 27:1298–1305
    [Google Scholar]
  21. Pickard M. A., Hashimoto A. 1982; Isoenzymes of chloroperoxidase from Caldariomyces fumago. . Canadian Journal of Microbiology 28:1382–1388
    [Google Scholar]
  22. Remba R. D., Champion P. M., Fitchen D. B., Chiang R., Hager L. P. 1979; Resonance Raman investigations of chloroperoxidase, horseradish peroxidase and cytochrome c using Soret band laser excitation. Biochemistry 18:2280–2290
    [Google Scholar]
  23. Sae A. S. W, Cunningham B. A. 1979; Isolation and properties of chloroperoxidase isoenzymes. Phytochemistry 18:1785–1787
    [Google Scholar]
  24. Segrest J. P., Jackson R. L. 1972; Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Methods in Enzymology 28:54–63
    [Google Scholar]
  25. Sharon N., Lis H. 1982; Glycoproteins. In The Proteins 5, 3rd edn. pp. 1–144 Edited by Neurath H., Hill R. L. New York: Academic Press;
    [Google Scholar]
  26. Shaw P. D., Beckwith J. R., Hager L. P. 1959; Biological chlorination. II. The biosynthesis of δ-chlorolevulinic acid. Journal of Biological Chemistry 2342560–2564
    [Google Scholar]
  27. Thomas J. A., Morris D. R., HAGER L. P. 1970; Chloroperoxidase. VIII. Formation of peroxide and halide complexes and their relation to the mechanism of the halogenation reaction. Journal of Biological Chemistry 2453135–3142
    [Google Scholar]
  28. Thomas P. E., Ryan D., Levin W. 1976; An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Analytical Biochemistry 75168–176
    [Google Scholar]
  29. Warburg O., Christun W. 1941; Isoliemng und Krystallisation des Ghngsfermens Enolase. Biochemische Zeitschrifr 310384–421
    [Google Scholar]
  30. WORTHINGTON ENZYME MANUAL 1972; Peroxidase (horseradish). p. 43 Freehold, New Jersey:: Worthington Biochemical Corporation.;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-8-2051
Loading
/content/journal/micro/10.1099/00221287-130-8-2051
Loading

Data & Media loading...

Most cited Most Cited RSS feed