1887

Abstract

Deep-sea bacteria were isolated from the digestive tract of animals inhabiting depths of 5900 m in the Puerto Rico Trench and 4300 m near the Walvis Ridge. Growth of two bacterial strains was measured in marine broth and in solid media under a range of pressures and temperatures. Both strains were barophilic at 2 °C (± 1 °C) with an optimal growth rate of 0·22 h at a pressure 30% lower than that encountered At 1 atm they grew at temperatures ranging from 10·2 to 180·2 °C (± 0·3 °C), while pressures increased the upper temperature limit to 230·3 °C. Both strains were identified as members of the genus , based on standard taxonomic tests and mol % G + C values (470·0 and 470·1). Ribonucleotide sequences determined for 5S ribosomal RNA from each strain confirmed relationship to the group, as represented by and , but the barophiles were clearly distinct from these species. Secondary structure conformed to the established model for eubacterial 5S rRNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-8-1911
1984-08-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/8/mic-130-8-1911.html?itemId=/content/journal/micro/10.1099/00221287-130-8-1911&mimeType=html&fmt=ahah

References

  1. Bain N., Shewan J. M. 1968; Identification of Aeromonas, Vibrio and related organisms. In Identification Methods for Microbiologists Part B pp. 79–84 Edited by Gibbs B. M., Shapton D. A. New York: Academic Press;
    [Google Scholar]
  2. Bang S. S., Baumann L., Woolkalis M. J., Baumann P. 1981; Evolutionary relationships in Vibrio and Photobacterium as determined by immunological studies of superoxide-dismutase. Archives of Microbiology 130:111–120
    [Google Scholar]
  3. Baross J. A., Deming J. W., Becker R. R. 1984; Evidence for growth of bacteria at high temperature and pressure. In Proceedings of the Third International Symposium on Microbial Ecology. Edited by Klug M. J. East Lansing, Michigan: American Society for Microbiology; (in the Press)
    [Google Scholar]
  4. Baumann L., Baumann P. 1977; Study of relationship among marine and terrestrial enterobacteria by means of in vitro DNA-ribosomal RNA hybridization. Microbios Letters 3:11–20
    [Google Scholar]
  5. Baumann L., Bang S. S., Baumann P. 1980; Studies of relationship among species of Vibrio,Photobacterium and terrestrial enterobacteria by an immunological comparison of glutamine synthetase and superoxide dismutase. Current Microbiology 4:133–138
    [Google Scholar]
  6. Brownlee G. G., Sanger F., Barrell B. G. 1968; The sequence of 5S ribosomal ribonucleic acid. Journal of Molecular Biology 34:379–412
    [Google Scholar]
  7. Buchanan R. E., Gibbons N. E. 1974 Bergey’s Manual of Determinative Bacteriology, 8th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Chaconas G., Van De Sande J. H. 1980; 5´-32P labeling of RNA and DNA restriction fragments. Methods in Enzymology 65:75–85
    [Google Scholar]
  9. Dams E., Vandenberghe A., De Wachter R. 1983; Sequences of the 5S rRNAs of Azotobactervinelandii, Pseudomonas aeruginosa and Pseudomonas fluorescens with some notes on 5S RNA secondary structure. Nucleic Acids Research 11:1245–1252
    [Google Scholar]
  10. Delihas N., Anderson J. 1982; Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Research 10:7323–7344
    [Google Scholar]
  11. Deming J. W. 1981 Ecology of barophilic deep-sea bacteria. PhD thesis, University of Maryland
    [Google Scholar]
  12. Deming J. W., Colwell R. R. 1981; Barophilic bacteria associated with deep-sea animals. BioScience 31:507–511
    [Google Scholar]
  13. Deming J. W., Colwell R. R. 1982; Barophilic bacteria associated with the digestive tract of abyssal holothurians. Applied and Environmental Microbiology 44:1222–1230
    [Google Scholar]
  14. Deming J. W., Tabor P. S., Colwell R. R. 1981; Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates. Microbial Ecology 7:85–94
    [Google Scholar]
  15. De Wachter R., Chen M. W., Vandenberghe A. 1982; Conservation of secondary structure in 5S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequence is energetically favorable. Biochimie 64:311–329
    [Google Scholar]
  16. Dietz A. S., Yayanos A. A. 1978; Silica gel media for isolating and studying bacteria under hydrostatic pressure. Applied and Environmental Microbiology 36:966–968
    [Google Scholar]
  17. Donis-Keller H. 1980; Phy-M-an RNAse activity specific for U-residues and A-residues useful in RNA sequence analysis. Nucleic Acids Research 8:3133–3142
    [Google Scholar]
  18. Donis-Keller H., Maxam A. M., Gilbert W. 1977; Mapping adenines, guanines and pyrimidines in RNA. Nucleic Acids Research 4:2527–2537
    [Google Scholar]
  19. England T. E., Bruce A. G., Uhlenbeck O. C. 1980; Specific labeling of 3´ termini of RNA with T4 RNA ligase. Methods in Enzymology 65:65–74
    [Google Scholar]
  20. Fox G. E., Woese C. R. 1975; 5S RNA secondary structure. Nature, London 256:505–507
    [Google Scholar]
  21. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen R. K., Chen K. N., Woese C. R. 1980; The phylogeny of procaryotes. Science 209:457–463
    [Google Scholar]
  22. Garrett R. A., Douthwaite S., Noller H. F. 1981; Structure and role of 5S RNA-protein complexes in protein biosynthesis. Trends in Biochemical Sciences 6:137–139
    [Google Scholar]
  23. Gibson D. W., Hendrie M. S., Houston N. C., Hobbs G. 1977; The identification of some Gramnegative heterotrophic aquatic bacteria. In Aquatic Microbiology pp. 135–159 Edited by Skinner F. A., Shewan J. M. New York: Academic Press;
    [Google Scholar]
  24. Hassur S. M., Whitlock H. H. 1974; UV shadowing - new and convenient method for location of ultraviolet absorbing species in polyacrylamide gels. Analytical Biochemistry 59:162–164
    [Google Scholar]
  25. Hori H., Osawa S. 1979; Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proceedings of the National Academy of Sciences of the United States of America 76:381–385
    [Google Scholar]
  26. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology 66:24–26
    [Google Scholar]
  27. Jannasch H. W., Wirsen C. O., Taylor C. D. 1982; Deep-sea bacteria: isolation in the absence of decompression. Science 216:1315–1317
    [Google Scholar]
  28. Jordan B. R. 1971; Studies on 5S RNA conformation by partial ribonuclease hydrolysis. Journal of Molecular Biology 55:423–439
    [Google Scholar]
  29. Klotz L. C., Komar N., Blanken R. C., Mitchel R. M. 1979; Calculation of evolutionary trees from sequence data. Proceedings of the National Academy of Sciences of the United States of America 76:4516–4520
    [Google Scholar]
  30. Komiya H., Kawakami M., Takemura S., Kumagai I., Erdman V. A. 1983; Terminal heterogeneity and corrections of the nucleotide sequence of 5S rRNA from an extreme thermophile, Thermusthermophilus HB8. Nucleic Acids Research 11:913–916
    [Google Scholar]
  31. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, London 178:703
    [Google Scholar]
  32. Kuntzel H., Heidrich M., Piechulla B. 1981; Phylogenetic tree derived from bacterial, cytosol and organelle 5S ribosomal RNA sequences. Nucleic Acids Research 9:1451–1461
    [Google Scholar]
  33. Kuntzel H., Piechulla B., Hahn U. 1983; Consensus structure and evolution of 5S rRNA. Nucleic Acids Research 11:893–900
    [Google Scholar]
  34. Li W. H. 1981; Simple method for constructing trees from distance matrices. Proceedings of the National Academy of Sciences of the United States of America 78:1085–1089
    [Google Scholar]
  35. Luehrsen K. R., Fox G. E. 1981a; Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA. Proceedings of the National Academy of Sciences of the United States of America 78:2150–2154
    [Google Scholar]
  36. Luehrsen K. R., Fox G. E. 1981b; The nucleotide sequence of Beneckeaharveyi 5S rRNA. Journal of Molecular Evolution 17:52–55
    [Google Scholar]
  37. Mackay R. M., Salgado D., Bonen L., Stackebrandt E., Doolittle W. F. 1982; The 5S ribosomal RNAs of Paracoccusdenitrificansand Prochloron. Nucleic Acids Research 10:2963–2970
    [Google Scholar]
  38. Mandel M., Igambi I., Bergendahl J., Dodson M. L., Scheltzen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. Journal of Bacteriology 101:333–338
    [Google Scholar]
  39. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  40. Maxam A. M., Gilbert W. 1977; New method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America 74:560–564
    [Google Scholar]
  41. Meyhack B., Pace B., Pace N. R. 1977; Involvement of precursor specific segments in in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry 16:5003–5015
    [Google Scholar]
  42. Morita R. Y. 1976; Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic bacteria. In The Survival of Vegetative Microbes pp. 279–298 Edited by Gray T. G. R., Postgate J. R. Cambridge: Cambridge University Press;
    [Google Scholar]
  43. Newhouse N., Nicoghosian K., Cedergren R. J. 1981; The nucleotide sequence of phenylalanine rRNA and 5S RNA from Rhodospirillum rubrum. Canadian Journal of Biochemistry 59:921–932
    [Google Scholar]
  44. Palleroni N. J., Kunisawa R., Comtopoula R., Doudoroff R. 1973; Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23:333–339
    [Google Scholar]
  45. Peattie D. A. 1979; Direct chemical method for sequencing RNA. Proceedings of the National Academy of Sciences of the United States of America 76:1760–1764
    [Google Scholar]
  46. Reichelt J. L., Baumann P., Baumann L. 1976; Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Archives of Microbiology 110:101–120
    [Google Scholar]
  47. Schwarz J. R., Yayanos A. A., Colwell R. R. 1976; Metabolic activity of the intestinal microflora of a deep-sea invertebrate. Applied and Environmental Microbiology 31:46–48
    [Google Scholar]
  48. Studnicka G. M., Eiserling F. A., Lake J. A. 1981; Computer method for predicting the secondary structure of single stranded RNA. Nucleic Acids Research 5:3365–3387
    [Google Scholar]
  49. Tabor P. S., Deming J. W., Ohwada K., Davis H., Waxman M., Colwell R. R. 1981; A pressure-retaining deep ocean sampler and transfer system for measurement of microbial activity in the deep sea. Microbial Ecology 7:51–65
    [Google Scholar]
  50. Tabor P. S., Deming J. W., Ohwada K., Colwell R. R. 1982; Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples. Applied and Environmental Microbiology 44:413–422
    [Google Scholar]
  51. Woese C. R., Pribula C. D., Fox G. E., Zablen L. B. 1975; The nucleotide sequence of the 5S ribosomal RNA from a photobacterium. Journal of Molecular Evolution 5:35–46
    [Google Scholar]
  52. Yayanos A. A. 1982; Deep-sea biophysics. In Subseabed Disposal Program Annual Report January to September 1981 II SAND82-0664/II pp. Edited by Hinga K. R. Albuquerque: Sandia National Laboratories;
    [Google Scholar]
  53. Yayanos A. A., Dietz A. S. 1982; Thermal inactivation of a deep-sea barophilic bacterium. Applied and Environmental Microbiology 43:1481–1489
    [Google Scholar]
  54. Yayanos A. A., Dietz A. S., Van Boxtel R. 1979; Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810
    [Google Scholar]
  55. Yayanos A. A., Dietz A. S., Van Boxtel R. 1981; Obligately barophilic bacterium from the Mariana Trench. Proceedings of the National Academy of Sciences of the United States of America 78:5112–5214
    [Google Scholar]
  56. Yayanos A. A., Dietz A. S., Van Boxtel R. 1982; Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Applied and Environmental Microbiology 44:1356–1361
    [Google Scholar]
  57. Zobell C. E., Morita R. Y. 1957; Barophilic bacteria in some deep sea sediments. Journal of Bacteriology 73:563–568
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-8-1911
Loading
/content/journal/micro/10.1099/00221287-130-8-1911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error