Nitrogen Metabolism in a New Obligate Methanotroph, Strain 6 Free

Abstract

A new obligate methanotroph was isolated and characterized. It was classified as a ‘’ species and named ‘’ sp. strain 6. Nitrogen metabolism in ‘’ 6 was found to be similar to other Type I1 methanotrophs, including the assimilation of nitrogen exclusively by the glutamine synthetaselglutamate synthase system. However, unlike other Type I1 methanotrophs, it appeared that glutamine synthetase activity was regulated by adenylylation in this organism. ‘’ 6 was grown in continuous culture with either dinitrogen or nitrate as sole nitrogen source under various dissolved oxygen tensions. Higher rates of methane oxidation and a more developed intracytoplasmic membrane system were found at lower oxygen tensions with nitrate as the nitrogen source but at higher oxygen tensions with dinitrogen as the nitrogen source, This suggested that carbon metabolism was influenced by nitrogen metabolism in this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-7-1827
1984-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/7/mic-130-7-1827.html?itemId=/content/journal/micro/10.1099/00221287-130-7-1827&mimeType=html&fmt=ahah

References

  1. Anthony C. 1982 The Biochemistry of Methylotrophs. London: Academic Press;
    [Google Scholar]
  2. Bailey M. L., Downs J., Drozd J. W. 1978; Nitrogen metabolism in Methylococcus NCIB 11083. Proceedings of the Society for General Microbiology 5:65–66
    [Google Scholar]
  3. Blackmore M. A., Quayle J. R. 1970; Microbial growth on oxalate by a route not involving glyoxylatecarboligase. Biochemical Journal 118:53–59
    [Google Scholar]
  4. De Bont J. A. M, Mulder E. G. 1974; Nitrogen fixation and co-oxidation of ethylene by a methaneutilizing bacterium. Journal of General Microbiology 83:113–121
    [Google Scholar]
  5. De Bont J. A. M, Mulder E. G. 1976; Invalidity of the acetylene reduction assay in alkane-utilizating, nitrogen-fixing bacteria. Applied and Environmental Microbiology 31:640–647
    [Google Scholar]
  6. Brannan J., Higgins I. J. 1978; Effect of growth conditions on the intracytoplasmic membranes of Methylosinus trichosporium OB3b. Proceedings of the Society of General Microbiology 5:69
    [Google Scholar]
  7. Chetina E. V., Suzina N. E., Fikhte B. A., Trotsenko YU. A. 1982; Influence of culture conditions on organization of the membrane apparatus in Methylomonas methanica. Mikrobiologiya 51:247–254
    [Google Scholar]
  8. Colby J., Dalton H., Whittenbury R. 1975; An improved assay for bacterial methane monooxygenase: some properties of the enzyme from Methylomonas methanica. Biochemical Journal 151:459–462
    [Google Scholar]
  9. Dahl J. S., Mehta R. J., Hoare D. S. 1972; New obligate methylotroph. Journal of Bacteriology 109:916–921
    [Google Scholar]
  10. Dalton H. 1977; Ammonia oxidation by the methane oxidising bacterium Methylococcuscapsulatus strain Bath. Archives of Microbiology 114:273–279
    [Google Scholar]
  11. Dalton H. 1980; Chemoautotrophic nitrogen fixation. In Proceedings of the Phytochemical Society of Europe Symposium 18 pp. 177–196 Edited by Stewart W. D. P., Gallon J. R. London: Academic Press;
    [Google Scholar]
  12. Dalton H., Whittenbury R. 1978a; The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus strain Bath. Archives of Microbiology 109:147–151
    [Google Scholar]
  13. Dalton H., Whittenbury R. 1976b; Nitrogen metabolism in Methylococcus capsulatus (strain Bath). In Microbial Production and Utilization of Gases pp. 379–388 Göttingen: Akademie der Wissenschaftenzu Göttingen;
    [Google Scholar]
  14. Davey J. F., Whittenbury R., Wilkinson J. F. 1972; The distribution in methylobacteria of some key enzymes concerned with intermediary metabolism. Archiv für Mikrobiologie 87:359–366
    [Google Scholar]
  15. Drozd J. W., Godley A., Bailey M. L. 1978; Ammonia oxidation by methane-oxidising bacteria. Proceedings of the Society for General Microbiology 5:66–67
    [Google Scholar]
  16. Foster J. W., Davis R. H. 1966; A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. Journal of Bacteriology 91:1924–1931
    [Google Scholar]
  17. Gancedo C., Holzer H. 1968; Enzymatic inactivation of glutamine synthetase in Enterobacteriaceae. European Journal of Biochemistry 4:190–192
    [Google Scholar]
  18. Ginsburg A., Yeh J., Henning S. B., Denton M. D. 1970; Some effects of adenylylation on the biosynthetic properties of the glutamine synthetase from Escherichia coli. Biochemistry 9:633–648
    [Google Scholar]
  19. Higgins I. J., Hammond R. C., Sariaslani F. S., Best D., Davies M. M., Tryhorn S. E., Taylor F. 1979; Biotransformation of hydrocarbons and related compounds by whole organism suspension of methane-grown Methylosinus trichosporium OB3b. Biochemical and Biophysical Research Communications 89:671–677
    [Google Scholar]
  20. Higgins I. J., Best D. J., Hammond R. C., Scott D. 1981; Methane-oxidizing microorganisms. Microbiological Reviews 45:556–590
    [Google Scholar]
  21. Janssen D. B., Hubb J. M., Leenen P. J. M, Van Der Drift C. 1980; The enzymes of ammonia assimilation of Pseudomonas aeruginosa. Archives of Microbiology 124:197–203
    [Google Scholar]
  22. Johansson B. C., Gest H. 1977; Adenylylation/deadenylylation control of glutamine synthetase of Rhodopseudomonas capsulata. European Journal of Biochemistry 81:365–371
    [Google Scholar]
  23. Johnson J. L. 1981; Genetic characterizations. In Manual of Methods of General Bacteriology pp. 450–472 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Large P. J., Quayle J. R. 1963; Microbial growth on C1 compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochemical Journal 87:386–395
    [Google Scholar]
  25. Lawrence A. J., Quayle J. R. 1970; Alternative carbon assimilation pathways in methane-utilizing bacteria. Journal of General Microbiology 63:371–374
    [Google Scholar]
  26. Layne E. 1957; Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology 3:447–454
    [Google Scholar]
  27. Lepo J. R., Wyss O., Tabita F. R. 1982; Regulation and biochemical characterization of the glutamine synthetase of Azotobacter vinelandii. Biochimica et biophysica acta 704:414–421
    [Google Scholar]
  28. Lynch M. J., Wopat A. E., O’Connor M. L. 1980; Characterization of two new facultative methanotrophs. Applied and Environment Microbiology 40:400–407
    [Google Scholar]
  29. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microoganisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  30. Murrell J. C., Dalton H. 1983a; Purification and properties of glutamine synthetase from Methylococcus capsulatus(Bath). Journal of General Microbiology 129:1187–1196
    [Google Scholar]
  31. Murrell J. C., Dalton H. 1983b; Ammonia assimilation in Methylococcus capsulatus (Bath) and other obligate methanotrophs. Journal of General Microbiology 129:1197–1206
    [Google Scholar]
  32. Murrell J. C., Dalton H. 1983c; Nitrogen fixation in obligate methanotrophs. Journal of General Microbiology 129:3481–3486
    [Google Scholar]
  33. Nicholas D. J. D, Nason D. 1957; Determination of nitrate and nitrite. Methods in Enzymology 3:981–984
    [Google Scholar]
  34. O’Connor M. L., Hanson R. S. 1978; Linkage relationships between mutants of Methylobacterium organophilum impaired in their ability to grow on one-carbon compounds. Journal of General Microbiology 104:105–111
    [Google Scholar]
  35. Patt T. E., Hanson R. S. 1978; Intracytoplasmic membranes, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. Journal of Bacteriology 134:636–644
    [Google Scholar]
  36. Portnoy D. A., Moseley S. L., Falkow S. 1981; Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infection and Immunity 31:775–782
    [Google Scholar]
  37. Robson R. L., Postgate J. R. 1980; Oxygen and hydrogen in biological nitrogen fixation. Annual Reviews of Microbiology 34:183–207
    [Google Scholar]
  38. Scott D., Brannan J., Higgins I. J. 1981; The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b. Journal of General Microbiology 125:63–72
    [Google Scholar]
  39. Shishkina V. N., Trotsenko YU. A. 1979; Pathways of ammonia assimilation in obligate methane utilizers. FEMS Microbiology Letters 5:187–191
    [Google Scholar]
  40. Siedel J., Shelton E. 1979; Purification and properties of Azotobacter vinelandii glutamine synthetase. Archives of Biochemistry and Biophysics 192:214–224
    [Google Scholar]
  41. Sokolov I. G., Romanovskaya V. A., Shkurko Yu. B., Malashenko YU. R. 1980; Comparative characterization of the enzyme systems of methaneutilizing bacteria that oxidize NH2OH and CH3OH. Mikrobiologiya 49:202–209
    [Google Scholar]
  42. Stacey G., Vanbaalen C., Tabita F. R. 1979; Nitrogen and ammonia assimilation in the cyanobacteria: regulation of glutamine synthetase. Achives of Biochemistry and Biophysics 194:457–467
    [Google Scholar]
  43. Stadtman E. R., Ginsburg A. 1974; The glutamine synthetase of Escherichia coli: structure and control. In The Enzymes 10, 3rd edn. pp. 755–807 Edited by Boyer P. D. New York: Academic Press;
    [Google Scholar]
  44. Stanley S. H., Prior S. D., Leak D. J., Dalton H. 1983; Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidizing organisms: studies of batch and continuous cultures. Biotechnology Letters 5:487–490
    [Google Scholar]
  45. Streicher S. L., Tyler B. 1981; Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium Streptomyces cattleya. Proceedings of the National Academy of Sciences of the United States of America 78:229–233
    [Google Scholar]
  46. Tabita F. R., Caruso P., Whitman W. 1978; Facile assay of enzymes unique to the Calvin cycle in intact cells, with special reference to ribulose 1,5-bisphosphate carboxylase. Analytical Biochemistry 84:462–472
    [Google Scholar]
  47. Tronick S. R., Ciardi J. E., Stadtman E. R. 1973; Comparative biochemical and immunological studies of bacterial glutamine synthetases. Journal of Bacteriology 115:858–868
    [Google Scholar]
  48. Whittenbury R., Dalton H. 1981; The methylotrophic bacteria. In The Prokaryotes 1: pp. 894–902 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. New York: Springer-Verlag;
    [Google Scholar]
  49. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. Journal of General Microbiology 61:205–218
    [Google Scholar]
  50. Wolfe R. S., Higgins I. J. 1979; Microbial biochemistry of methane - a study of contrasts. Part 2: Methanotrophy. In International Review of Biochemistry, Microbial Biochemistry 21: pp. 300–353 Edited by Quayle J. R. Baltimore: University Park Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-7-1827
Loading
/content/journal/micro/10.1099/00221287-130-7-1827
Loading

Data & Media loading...

Most cited Most Cited RSS feed