1887

Abstract

The zonal dome model has previously been shown to fit the shape of the poles of the Gram-positive quite accurately, but measurements of the angle that the pole of makes with the cylinder portion of the cell show that the poles of this organism do not fit this model. Furthermore, the diameters of curvatures in different parts of the completed and nascent pole are contrary to the predictions of the zonal dome model and several other proposed models. The results suggest that the poles of Gram-positive rods are generated by a mechanism designated the ‘split-and-stretch’ model. The model assumes that no additional murein is inserted as the septal wall is split and externalized.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-7-1711
1984-07-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/7/mic-130-7-1711.html?itemId=/content/journal/micro/10.1099/00221287-130-7-1711&mimeType=html&fmt=ahah

References

  1. Barrett A. N., Burdett I. D. J. 1981; A threedimensional model reconstruction of pole assembly in Bacillus subtilis. Journal of Theoretical Biology 92:127–139
    [Google Scholar]
  2. Burdett I. D. J. 1980a; Analysis of sites of autolysis in Bacillus subtilis by electron microscopy. Journal of General Microbiology 120:35–49
    [Google Scholar]
  3. Burdett I. D. J. 1980b; Quantitative studies of rod- coccus morphogenesis in a temperature-sensitive rod-mutant of Bacillus subtilis. Journal of General Microbiology 121:93–103
    [Google Scholar]
  4. Burdett I. D. J, Higgins M. L. 1978; Studies of pole assembly in Bacillus subtilis by computer reconstruction of septal growth zones seen in central, longitudinal, thin sections of cells. Journal oj Bacteriology 133:959–971
    [Google Scholar]
  5. Fein J. E., Rogers H. J. 1976; Autolytic enzyme- deficient mutants of Bacillus subtilis 168. Journal of Bacteriology 127:1427–1442
    [Google Scholar]
  6. Higgins M. L. 1976; Three-dimensional reconstruction of whole cells of Streptococcus faecalis from thin sections of cells. Journal of Bacteriology 127:1337–1365
    [Google Scholar]
  7. Higgins M. L., Shockman G. D. 1976; Study of a cycle of cell wall assembly in Streptococcus faecalis by three-dimensional reconstructions of thin sections of cells. Journal of Bacteriology 127:1346–1358
    [Google Scholar]
  8. Jolliffe L. K., Doyle R. J., Streips U. N. 1981; The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25:753–763
    [Google Scholar]
  9. Koch A. L. 1982; On growth and form of Escherichia coli. Journal of General Microbiology 128:2527–2540
    [Google Scholar]
  10. Koch A. L. 1983; The sufiace stress tneory ot microbial shapes. Advances in Microbial Physiology 24:301–366
    [Google Scholar]
  11. Koch A. L., Higgins M. L., Doyle R. J. 1981a; Surface tension-like forces determine bacterial shapes: Streptococcus faecium. Journal of General Microbiology 123:151–161
    [Google Scholar]
  12. Koch A. L., Mobley H. L. T, Doyle R. J., Streips U. N. 1981b; The coupling of wall growth and chromosome replication in Gram-positive rods. FEMS Microbiology Letters 12:201–208
    [Google Scholar]
  13. Koch A. L., Higgins M. L., Doyle R. J. 1982; The role of surface stress in the morphology of microbes. Journal of General Microbiology 128:927 945
    [Google Scholar]
  14. Oldmixon E. 1974 The shapes of bacteria. PhD dissertation Temple University School of Medicine, Philadelphia, Pa, USA.:
    [Google Scholar]
  15. Pooley H. M. 1976; Turnover and spreading of old wall during surface growth of Bacillus subtilis. Journal of Bacteriology 125:1127–1138
    [Google Scholar]
  16. Rogers H. J., Pooley H. M., Thurman P. F., Taylor C. 1974; Wall and membrane growth in bacilli and their mutants. Annales de microbiologie 125b:135–147
    [Google Scholar]
  17. Rogers H. J., Perkins H. R., Ward J. B. 1980 Microbial Walls and Membranes. London: Chapman and Hall;
    [Google Scholar]
  18. Santo L., Leighton T. J., Doi R. H. 1972; Ultrastructural analysis of sporulation in a conditional serine protease mutant of Bacillus subtilis. Journal of Bacteriology 111:248–253
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-7-1711
Loading
/content/journal/micro/10.1099/00221287-130-7-1711
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error