1887

Abstract

A strain of that carries in its genome a staphylococcal chloramphenicol acetyltransferase gene (from pC194) responds to growth at different concentrations of chloramphenicol by an alteration in the number of copies per genome of the sequences encoding the gene. Growth at 20 µg chloramphenicol ml results in a 15-fold amplification of the sequences, whereas growth in the absence of chloramphenicol results in their loss. The mechanism of amplification probably has much in common with that involved in R factor transitioning. The hybridization procedures that have been used for accurately determining the number of copies of the amplified DNA sequences are potentially useful for plasmid copy number determination. The findings reported here also provide a potentially useful alternative to more conventional cloning strategies that are based on autonomous plasmids in The particular advantages that can be envisaged include enhanced stability of the cloned sequences and control of the number of copies that are present.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-7-1613
1984-07-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/7/mic-130-7-1613.html?itemId=/content/journal/micro/10.1099/00221287-130-7-1613&mimeType=html&fmt=ahah

References

  1. Alt F. W., Kellems R. E., Bertino J. R., Schimke R. T. 1978; Selective amplification of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. Journal of Biological Chemistry 253:1357–1370
    [Google Scholar]
  2. Anderson R. P., Roth J.R.. 1977; Tandem genetic duplications in phage and bacteria. Annual Review of Genetics 31:473–505
    [Google Scholar]
  3. Chisholm R. 1982; Gene amplification during development. Trends in Biochemical Sciences 7:161–162
    [Google Scholar]
  4. Clewell D. B., Helinski D. R. 1969; Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an open circular DNA form. Proceedings of the National Academy of Sciences of the United States of America 62:1159–1166
    [Google Scholar]
  5. Collins S., Groudine M. 1982; Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature; London: 298679–681
    [Google Scholar]
  6. Dalla-Favera R., Wong-STAAL F., Gallo R. C. 1982; one gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells from the same patient. Nature; London: 29961–63
    [Google Scholar]
  7. Dretzen G., Bellard M., Sassone-Corsi P., Chambon P. 1981; A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Analytical Biochemistry 112:295–298
    [Google Scholar]
  8. Fishman S. E., Hershberger C. L. 1983; Amplified DNA in Streptomyces fradiae. Journal of Bacteriology 155:459–466
    [Google Scholar]
  9. Gutterson N. I., Koshland D. E. Jr 1983; Replacement and amplification of bacterial genes with sequences altered in vitro. Proceedings of the National Academy of Sciences of the United States of America 80:4894–4898
    [Google Scholar]
  10. Haldenwang W. G., Banner C. D. B, Ollington J. F., Losick R., Hoch J. A., O’Connor M. B., Sonenshein A. L. 1980; Mapping of a cloned gene under sporulation control by insertion of a drug resistance marker into the Bacillus subtilis chromosome. Journal of Bacteriology 142:90–98
    [Google Scholar]
  11. Harris-Warwick R. M., Elkana Y., Ehrlich S. D., Lederberg J. 1975; Electrophoretic separation of Bacillus subtilis genes. Proceedings of the National Academy of Sciences of the United States of America 72:2207–2211
    [Google Scholar]
  12. Henner D. J., Hoch J. A. 1980; The Bacillus subtilis chromosome. Microbiological Reviews 44:57–82
    [Google Scholar]
  13. Hood L., Campbell J. H., Elgin S. C. R. 1975; The organisation, expression and evolution of antibody genes and other multigene families. Annual Review of Genetics 9:305–353
    [Google Scholar]
  14. Horiuchi T., Tomizawa J., Novick A. 1962; Iso-lation and properties of bacteria capable of high rates of β-galactosidase synthesis. Biochimica et biophysica acta 55:152–163
    [Google Scholar]
  15. Horiuchi T., Horiuchi S., Novick A. 1963; The genetic basis of hypersynthesis of β-galactosidase. Genetics 48:157–169
    [Google Scholar]
  16. Jeffreys A. J., Flavell R. A. 1977; A physical map of the DNA regions flanking the rabbit β-globin gene. Cell 12:429–439
    [Google Scholar]
  17. Laskey R. A. 1980; The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. Methods in Enzymology 65:363–371
    [Google Scholar]
  18. Little C. D., Nau M. M., Carney D. N., Gazdar A. F., Minna J. D. 1983; Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature; London: 306194–196
    [Google Scholar]
  19. Nomura M., Morgan E. A., Jaskunas S. R. 1977; Genetics of bacterial ribosomes. Annual Review of Genetics 11:297–347
    [Google Scholar]
  20. Nunberg J. H., Kaufman R. J., Schimke R. T., Urlaub G., Chasin L. A. 1978; Amplified dihydrofolate reductase genes are localized to homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proceedings of the National Academy of Sciences of the United States of America 75:5553–5556
    [Google Scholar]
  21. Ono H., Hintermann G., Crameri R., Wallis G., Hutter R. 1982; Reiterated DNA sequences in a mutant strain of Streptomyces glaucescens and cloning of the sequence in Escherichia coli. Molecular and General Genetics 186:106–110
    [Google Scholar]
  22. Ostroff G. R., PÈne J. J. 1983; Molecular cloning with bifunctional plasmid vectors in Bacillus subtilis: isolation of a spontaneous mutant of Bacillus subtilis with enhanced transformability for Escherichia coli- propagated chimeric plasmid DNA. Journal of Bacteriology 156:934–936
    [Google Scholar]
  23. Perlman D., Rownd R. H. 1975; Transition of R factor NR1 in Proteus mirabilis: molecular structure and replication of NR1 deoxyribonucleic acid. Journal of Bacteriology 123:1013–1034
    [Google Scholar]
  24. Peterson B. C., Rownd R. H. 1983; Homologous sequences pther than insertion elements can serve as recombination sites in plasmid drug resistance gene amplification. Journal of Bacteriology 156:177–185
    [Google Scholar]
  25. Piggot P. J., Curtis C. A. M, De Lencastre H. 1984; Use of integrational plasmid vectors to demonstrate the polycistronic nature of a transcriptional unit {spoilA) required for sporulation ofBacillus subtilis. Journal of General Microbiology (in the Press)
    [Google Scholar]
  26. Robinson M., Lewis E., Napier E. 1981; Occurrence of reiterated DNA sequences in strains of Streptomyces produced by an interspecific protoplast fusion. Molecular and General Genetics 182:336–340
    [Google Scholar]
  27. Rochaix J.-D., Bird A., Bakken A. 1974; Ribosomal RNA gene amplification by rolling circles. Journal of Molecular Biology 87:473–487
    [Google Scholar]
  28. Sager R., Anisowicz A., Howell N. 1981; Genomic rearrangements in a mouse cell line containing integrated SV40 DNA. Cell 23:41–50
    [Google Scholar]
  29. Saito H., Anzai H., Kawamura F. 1983; Multicopy integration vectors in Bacillus subtilis. . In Proceedings of the Fourth International Symposium on Genetics of Industrial Microorganisms. Kyoto, Japan.: Pp. 125–130
    [Google Scholar]
  30. Schimke R. T. (editor) 1982 Gene Amplification. New York:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  31. Schrempf H. 1982; Plasmid loss and changes within the chromosomal DNA of Streptomyces reticuli. Journal of Bacteriology 151:701–707
    [Google Scholar]
  32. Southern E. 1979; Gel electrophoresis of restriction fragments. Methods in Enzymology 68:152–176
    [Google Scholar]
  33. Spradling A. C., Mahowald A. P. 1981; A chromosome inversion alters the pattern of specific DNA replication in Drosophila follicle cells. Cell 27:203–209
    [Google Scholar]
  34. Stewart G. C., Wilson F. E., Bott K. F. 1982; Detailed physical mapping of the ribosomal RNA genes of Bacillus subtilis. Gene 19:153–162
    [Google Scholar]
  35. Vasseghi H., Claverys J.-P. 1983; Amplification of a chimeric plasmid carrying an erythromycin- resistance determinant introduced into the genome of Streptococcus pneumoniae. Gene 21:285–292
    [Google Scholar]
  36. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proceedings of the National Academy of Sciences of the United States of America 76:3683–3687
    [Google Scholar]
  37. Wilson F. E., Hoch J. A., Bott K. 1981; Genetic mapping of a linked cluster of ribosomal ribonucleic acid genes in Bacillus subtilis. Journal of Bacteriology 148:624–628
    [Google Scholar]
  38. Yoshikawa H., O’Sullivan A., Sueoka N. 1964; Sequential replication of the Bacillus subtilis chromosome, III. Regulation of initiation. Proceedings of the National Academy of Sciences of the United States of America 52:973–980
    [Google Scholar]
  39. Young M. 1983; The mechanism of insertion of a segment of heterologous DNA into the chromosome of Bacillus subtilis. Journal of General Microbiology 129:1497–1512
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-7-1613
Loading
/content/journal/micro/10.1099/00221287-130-7-1613
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error