1887

Abstract

All of eight strains of examined contained between two and six plasmids ranging from 7 to > 200 MDal in size. Strain MCC-1, a derivative of NCIMB 8003, was cured of various of the four largest of its five plasmids and the phenotypes of the strains compared. All fixed nitrogen and exhibited uptake hydrogenase activity. No differences were observed in carbon source utilization or antibiotic, heavy metal or UV resistance. The genome sizes of two strains of were determined by two-dimensional electrophoresis. Strain CW8, an isolate from local soil containing two small plasmids of 6 and 6·5 MDal contained unique DNA sequences equivalent to 1·78 × 10 (±20%) bp (1·2 × 10 Dal). In strain MCD-1, a derivative of MCC-1, containing a 190 MDal and 7 MDal plasmid, the genome size was 1·94 × 10 (±20%) bp. In exponential batch cultures, both contained 20 to 25 genome equivalents per cell. MCD-1 exhibited complex UV kill kinetics with a marked plateau of resistance; CW8 showed a simple response inconsistent with the possibility of organization of its DNA into identical chromosome copies capable of independent segregation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-7-1603
1984-07-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/7/mic-130-7-1603.html?itemId=/content/journal/micro/10.1099/00221287-130-7-1603&mimeType=html&fmt=ahah

References

  1. Ahmed N. H., Venkataraman G. S. 1974; Radiation studies on Azotobacter chroococcum. I. Photoreactivation and dose reduction curve. Zen- tralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung II) 129:242–246
    [Google Scholar]
  2. Bak A. L., Christiansen C., Stenderup A. 1970; Bacterial genome sizes determined by DNA renaturation studies. Journal of General Microbiology 64:377–380
    [Google Scholar]
  3. Beringer J. E. 1974; R-factor transfer in Rhizobium leguminosarum. Journal of General Microbiology 84:188–198
    [Google Scholar]
  4. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  5. Casse F., Boucher C., Julliot J. S., Michel M., Dénarié J. 1979; Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. Journal of General Microbiology 113:229–242
    [Google Scholar]
  6. Chakrabarty A. M. 1976; Plasmids in Pseudomonas. Annual Review of Genetics 10:7–30
    [Google Scholar]
  7. De Ley J., Park I. W. 1966; Molecular biological taxonomy of some free-living nitrogen-fixing bacteria. Antonie van Leeuwenhoek 32:6–16
    [Google Scholar]
  8. Duff J. T., Wyss O. 1961; Isolation and classification of a new series of Azotobacter bacteriophages. Journal of General Microbiology 24:273–289
    [Google Scholar]
  9. Eckhardt T. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588
    [Google Scholar]
  10. Gillis M., De Ley J., Decleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. European Journal of Biochemistry 12:143–153
    [Google Scholar]
  11. Goucher C. R., Kochalaty W. A. 1957; Comparison of the cytochrome structure and radiation effects in Azotobacter. Archives of Biochemistry and Biophysics 68:30–38
    [Google Scholar]
  12. Hansen M. T. 1978; Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. Journal of Bacteriology 134:71–75
    [Google Scholar]
  13. Harvey R. J., Marr A. G., Painter P. R. 1967; Kinetics of growth of individual cells of Escherichia coli and Azotobacter agilis. Journal of Bacteriology 93:605–617
    [Google Scholar]
  14. Hegazi N. A., Jensen V. 1973; Studies of Azotobacter bacteriophages in Egyptian soils. Soil Biology and Biochemistry 5:231–243
    [Google Scholar]
  15. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  17. Newton J. W., Wilson P. W., Burris R. H. 1953; Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. Journal of Biological Chemistry 204:445–451
    [Google Scholar]
  18. Olsen R. H., Thomas D. D. 1973; Characteristics and purification of PRR1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid. Journal of Virology 12:1560–1567
    [Google Scholar]
  19. Ouellette C. A., Burris R. H., Wilson P. W. 1969; Deoxyribonucleic acid base composition of species of Klebsiella, Azotobacter and Bacillus. Antonie van Leeuwenhoek 35:275–286
    [Google Scholar]
  20. Paromenskaya L. N., Kuznetsova I. A. 1979; Transformation of the herbicide 2,4-D in a culture of Azotobacter. Microbiology (English translation) 48:915–917
    [Google Scholar]
  21. Partridge C. D. P, Walker C. C., Yates M. G., Postgate J. R. 1980; The relationship between hydrogenase and nitrogenase in Azotobacter chroococcum: effect of nitrogen sources on hydrogenase activity. Journal of General Microbiology 119:313–319
    [Google Scholar]
  22. Postgate J. R., Kent H. M., Robson R., Chesshyre J. A. 1984; The genomes of Desulfovi- brio gigas and D. vulgaris. Journal of General Microbiology 130:1597–1601
    [Google Scholar]
  23. Pridachina N. N., Novogrudskaya E. D., Kruglyak E. B., Chekasina E. V., Karochak T. S., Batrakov S. G. 1982; Azotobacter chroococcum, an organism producing a new antifungal antibiotic. Antibiotiki 27:3–6
    [Google Scholar]
  24. Pritchard R. H., Barth P. T., Collins J. 1969; Control of DNA synthesis in bacteria. Symposia of the Society for General Microbiology 19:263–297
    [Google Scholar]
  25. Sadoff H. L., Shimei B., Ellis S. 1979; Characterization of Azotobacter vinelandii deoxyribonucleic acid and folded chromosomes. Journal of Bacteriology 138:871–877
    [Google Scholar]
  26. Terzaghi B. E. 1980; Ultraviolet sensitivity and mutagenesis of Azotobacter. Journal of General Microbiology 118:271–273
    [Google Scholar]
  27. Thompson J. P., Skerman V. B. D. 1979 Azotobacteraceae: The Taxonomy and Ecology of the Aerobic Nitrogen-fixing Bacteria London & New York: Academic Press;
    [Google Scholar]
  28. Tirgari S., Moseley B. E. B. 1980; Transformation in Micrococcus radiodurans : measurement of various parameters and evidence for multiple independently segregating genomes per cell. Journal of General Microbiology 119:287–296
    [Google Scholar]
  29. Vancura V. 1961; Detection of gibberellic acid in Azotobacter cultures. Nature, London 192:88–89
    [Google Scholar]
  30. Yee T., Inouye M. 1982; Two-dimensional DNA electrophoresis applied to the study of DNA methyl- ation and the analysis of genome size of Myxococcus xanthus. Journal of Molecular Biology 154:181–196
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-7-1603
Loading
/content/journal/micro/10.1099/00221287-130-7-1603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error