1887

Abstract

Autolysis of exponentially growing was induced by a rapid treatment with distilled water before treatment with 0·5 -sodium acetate, pH 6·5, and incubation for 2 h at 30 °C. Electron microscopy revealed three stages of autolysis. In the first stage most of the cells were plasmolysed. In the second stage (from 5 to 20 min) the number of plasmolysed cells diminished, the profile of the outer membrane changed from asymmetric to symmetric, fractures appeared in the outer membrane and signs of peptidoglycan degradation became apparent. In the third stage (which began after 20 to 60 min) the ultrastructural alterations of the cell wall became more serious, the cytoplasmic membrane exhibited micromorphological lesions and progressive cellular disintegration occurred. The addition of chloramphenicol (100 μg ml) or tetracycline (4·5 μg ml), to either the culture or the suspensions of autolysing cells, did not significantly reduce the rate of autolysis. The presence of Ca or Mg (10 mM) in the autolytic medium inhibited autolysis and there were no significant ultrastructural alterations. The presence of 2 m- -bromosuccinimide (an inhibitor of bacterial autolytic enzymes) in the autolytic medium strongly inhibited autolysis of ;however, the bacteria incubated under these conditions showed significant ultrastructural alterations (extensive splitting of, and occasional fractures in, the outer membrane; cytoplasmic membrane and ribosomes not visible).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-6-1459
1984-06-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/6/mic-130-6-1459.html?itemId=/content/journal/micro/10.1099/00221287-130-6-1459&mimeType=html&fmt=ahah

References

  1. Asbell M. A., Eagon R. G. 1966; Role of multivalent cations in the organization, structure and assembly of the cell wall of Pseudomonas aeruginosa. Journal of Bacteriology 92:380–387
    [Google Scholar]
  2. Bayer M. E., Leive L. 1977; Effect of ethylene- diaminetetraacetate upon the surface of Escherichia coli. Journal of Bacteriology 130:1364–1381
    [Google Scholar]
  3. Birdsell D. C., Cota-Robles E. H. 1968; Lysis of spheroplasts of Escherichia coli by a non-ionic detergent. Biochemical and Biophysical Research Communications 31:438–446
    [Google Scholar]
  4. Boggis W., Kenward M. A., Brown M. R. W. 1979; Effects of divalent metal cations in the growth medium upon sensitivity of batch-grown Pseudomonas aeruginosa to EDTA or polymyxin B. Journal of Applied Bacteriology 47:477–488
    [Google Scholar]
  5. Burton A. J., Carter H. E. 1964; Purification and characterization of the lipid A component of the lipopolysaccharides from Escherichia coli. Biochemistry 3:411–418
    [Google Scholar]
  6. Cleveland IV. r., Höltje J. V., Wiujuun J., Tomasz A., Daneo-Moore L., Shockman G. D. 1975; Inhibition of bacterial wall lysins by lipotei- choic acids and related compounds. Biochemical and Biophysical Research Communications 67:1128–1135
    [Google Scholar]
  7. Cleveland R. F., Wickena A. J., Daneo-Moore L., Shockman G. D. 1976; Inhibition of wall auto- lysis in Streptococcus faecalis by lipoteichoic acid and lipids. Journal of Bacteriology 126:192–197
    [Google Scholar]
  8. Cleveland R. F., Daneo-Moore L., Wicken A. J., Shockman G. D. 1976b; Effect of lipoteichoic acid and lipids on lysis of intact cells of Streptococcus faecalis. Journal of Bacteriology 127:1582–1584
    [Google Scholar]
  9. Cornett J. B., Shockman G. D. 1978; Cellular lysis of Streptococcus faecalis induced with Triton X- 100. Journal of Bacteriology 135:153–160
    [Google Scholar]
  10. Costerton J. W., Brown M. R. W., Sturgess J. M. 1979; The cell envelope: its role in infection. In Pseudomonas aeruginosa pp. 41–62 Doggett R. G. Edited by London: Academic Press;
    [Google Scholar]
  11. Daneo-Moore L., Shockman G. D. 1977; The bacterial cell surface in growth and division. In The Synthesis, Assembly and Turnover of Cell Surface Components. Cell Surface Reviews 4 pp. 597–715 Poste G., Nicolson G. L. Edited by Amsterdam: North Holland Publishing Co.;
    [Google Scholar]
  12. Eagon R. G., Carson K. J. 1965; Lysis of cell walls and intact cells of Pseudomonas aeruginosa by ethylenediaminetetraacetic acid and by lysozyme. Canadian Journal of Microbiology 11:193–201
    [Google Scholar]
  13. Epstein W., schultz S. G. 1968; Ion transport and osmoregulation in bacteria. In Microbial Protoplasts, Spheroplasts and L-Forms pp. 186–193 Guze L. B. Edited by Baltimore: Williams & Wilkins.;
    [Google Scholar]
  14. Ghuysen J. M. 1977; Biosynthesis, and assembly of bacterial cell walls. In The Synthesis, Assembly and Turnover of Cell Surface Components. Cell Surface Reviews 4 pp. 463–595 Poste G., Nicolson G. L. Edited by Amsterdam: North Holland Publishing Co.;
    [Google Scholar]
  15. Katsui N., Tsuchido T., Hiramatsu R., Fujikawa, Fujikawa S., Takano M., Shibasaki I. 1982; Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. Journal of Bacteriology 151:1523–1531
    [Google Scholar]
  16. Leduc M., Van Heijenoort J. 1980; Autolysis of Escherichia coli. Journal of Bacteriology 142:52–59
    [Google Scholar]
  17. Leduc M., Kasra R., Van Heijenoort J. 1982; Induction and control of the autolytic system of Escherichia coli. Journal of Bacteriology 152:26–34
    [Google Scholar]
  18. Leive L. 1965; Release of lipopolysaccharide by EDTA treatment of Escherichia coli. Biochemical and Biophysical Research Communications 21:290–296
    [Google Scholar]
  19. Leive L., Shovlin V. K., Mergenhagen S. E. 1968; Physical, chemical and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate. Journal of Biological Chemistry 243:6384–6391
    [Google Scholar]
  20. Luft J. H. 1961; Improvements in epoxy resin embedding methods. Journal of Biophysical and Biochemical Cytology 9:409–412
    [Google Scholar]
  21. Mirelman D. 1979; Biosynthesis and assembly of cell wall peptidoglycan. In Bacterial Outer Membranes. Biogenesis and Functions pp. 115–166 Inouye M. Edited by New York: John Wiley;
    [Google Scholar]
  22. Pooley H. M., Shockman G. D. 1970; Relationship between the location of autolysis, cell wall synthesis and the development of resistance to cellular autolysis in Streptococcus faecalis after inhibition of protein synthesis. Journal of Bacteriology 103:457–466
    [Google Scholar]
  23. Ramachandran L. K., Witkop B. 1967; N-bromosuccinimide cleavage of peptides. Methods in Enzymology 11:283–299
    [Google Scholar]
  24. Ryter A., Kellenberger E. 1958; Étude au microscope électronique de plasmas contenant de l’acide désoxyribonucléique. I. Les nucléoïdes des bactéries en croissance active. Zeitschrift für Natur-forschung 13b:597–605
    [Google Scholar]
  25. Sayare M., Daneo-Moore L., Shockman G. D. 1972; Influence of macromolecular biosynthesis on cellular autolysis in Streptococcus faecalis. Journal of Bacteriology 112:337–344
    [Google Scholar]
  26. schindler M., Osborn M. J. 1979; Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 18:4425–4430
    [Google Scholar]
  27. Shockman G. D. 1965; Symposium on the fine structure and replication of bacteria and their parts. IV. Unbalanced cell wall synthesis: autolysis and cell wall thickening. Bacteriological Reviews 29:345–358
    [Google Scholar]
  28. Stolp H., Starr M. P. 1965; Bacteriolysis. Annual Review of Microbiology 19:79–104
    [Google Scholar]
  29. Venable J. H., Coggeshall R. 1965; A simplified lead citrate stain for use in electron microscopy. Journal of Cell Biology 25:407–408
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-6-1459
Loading
/content/journal/micro/10.1099/00221287-130-6-1459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error