1887

Abstract

The aspartase gene () of has been isolated in two plasmids, pGS73 and pGS94, which contain segments of bacterial DNA (12·5 and 2·8 kb, respectively) inserted into the gene of the vector pBR322. The plasmids were constructed by sequential sub-cloning from a larger ColEl- hybrid plasmid. The location of the gene confirmed predictions based on a correlation between the genetic and restriction maps of the corresponding region. The aspartase activities of plasmid-containing mutants were amplified four- to sixfold relative to parental strains. The gene product was tentatively identified as a poly-peptide of 55 000, which is somewhat larger than previous estimates ( 45 000 to 48 000) for aspartase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-5-1271
1984-05-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/5/mic-130-5-1271.html?itemId=/content/journal/micro/10.1099/00221287-130-5-1271&mimeType=html&fmt=ahah

References

  1. Bachmann B. J. 1983; Linkage map of Escherichia coli K-12;. , edition 7.. Microbiological Reviews 41:180–230
    [Google Scholar]
  2. Borck K., Beggs J. D., Brammar W. J., Hopkins A. S., Murray N. E. 1976; The construction in vitro of transducing derivatives of phage lambda. Molecular and General Genetics 146:199–207
    [Google Scholar]
  3. Clarke L., Carbon J. 1976; A colony bank containing synthetic ColEl hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99
    [Google Scholar]
  4. Cole S. T. 1982; Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. European Journal of Biochemistry 122:479–484
    [Google Scholar]
  5. Cole S. T., Guest J. R. 1980a; Genetic and physical characterization of lambda transducing phages (XfrdA) containing the fumarate reductase gene of Escherichia coli K12. Molecular and General Genetics 178:409–418
    [Google Scholar]
  6. Cole S. T., Guest J. R. 1980b; Amplification of fumarate reductase synthesis with XfrdA transducing phages and orientation of frdA gene expression. Molecular and General Genetics 179:377–385
    [Google Scholar]
  7. Cole S. T., Grundström T., Jaurin B., Robinson J. J., Weiner J. H. 1982; Location and nucleotide sequence of frdB, the gene coding for the iron-sulphur protein subunit of the fumarate reductase of Escherichia coli. European Journal of Biochemistry 126:211–216
    [Google Scholar]
  8. Courtright J. B., Henning U. 1970; Malate dehydrogenase mutants of Escherichia coli K-12. Journal of Bacteriology 102:722–728
    [Google Scholar]
  9. Creaghan I. T., Guest J. R. 1977; Suppression of the succinate requirement of Escherichia coli by mutations affecting succinate dehydrogenase activity. Journal of General Microbiology 102:183–194
    [Google Scholar]
  10. Edlund T., Grundström T., Normark S. 1979; Isolation and characterization of DNA repetitions carrying the chromosomal β-lactamase gene of Escherichia coli K-12. Molecular and General Genetics 173:115–125
    [Google Scholar]
  11. Georgopoulos C. P., Hohn B. 1978; Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proceedings of the National Academy of sciences of the United States of America 75:131–135
    [Google Scholar]
  12. Grundström T., Jaurin B. 1982; Overlap Between the ampC and frd operons on the Escherichia coli Chromosome. Proceedings of the National Academy of sciences of the United States of America 79:1111–1115
    [Google Scholar]
  13. Guest J. R. 1981; Partial replacement of succinate dehydrogenase function by phage- and plasmid- specified fumarate reductase in Escherichia coli. Journal of General Microbiology 121:171–179
    [Google Scholar]
  14. Guest J. R., Nice H. M. 1978; Chromosomal location of the mop (groE) gene necessary for bacteriophage morphogenesis in Escherichia coli. Journal of General Microbiology 109:329–333
    [Google Scholar]
  15. Guest J. R., Roberts R. E., Stephens P. E. 1983; Hybrid plasmids containing the pyruvate dehydrogenase complex genes and gene-DNA relationships in the 2 to 3 minute region of the Escherichia coli chromosome. Journal of General Microbiology 129:671–680
    [Google Scholar]
  16. Hendrix R. W., Tsui L. 1978; Role of the host in virus assembly: cloning of the Escherichia coli groE gene and identification of its protein product. Proceedings of the National Academy of sciences of the United States of America 75:136–139
    [Google Scholar]
  17. Jaurin B., Grundström T. 1981; ampC cephalo- sporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase types. Proceedings of the National Academy of sciences of the United States of America 78:4897–4901
    [Google Scholar]
  18. Kleckner N., Roth J., Botstein D. 1977; Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. Journal of Molecular Biology 116:125–159
    [Google Scholar]
  19. Lohmeier E., Hagen D. S., Dickie P., Weiner J. H. 1981; Cloning and expression of the fumarate reductase gene of Escherichia coli. Canadian Journal of Biochemistry 59:158–164
    [Google Scholar]
  20. Marcus M., Halpern Y. S. 1969a; The metabolic pathway of glutamate in Escherichia coli K-12. Biochimica et biophysica acta 177:314–320
    [Google Scholar]
  21. Marcus M., Halpern Y. S. 1969b; Mapping of the aspartase gene in Escherichia coli K-12. Israel Journal of Medical sciences 5:413–415
    [Google Scholar]
  22. Marcus M., Halpern Y. S. 1969c; Genetic analysis of the glutamate permease in Escherichia coli K-12. Journal of Bacteriology 97:1118–1128
    [Google Scholar]
  23. Neidhardt F. C., Vaughn V., Phillips T. A., Bloch P. L. 1983; Gene-protein index of Escherichia coli K-12. Microbiological Reviews 47:231–284
    [Google Scholar]
  24. Nishida Y., Sato T., Tosa T., Chibata I. 1979; Immobilization of Escherichia coli cells having aspartase activity with carrageenan and locust bean gum. Enzyme and Microbial Technology 1:95–99
    [Google Scholar]
  25. Rudolph F. D., Fromm H. J. 1971; Purification and properties of aspartase from Escherichia coli. Archives of Biochemistry and Biophysics 147:92–98
    [Google Scholar]
  26. Sancar A., Hack A. M., Rupp W. D. 1979; Simple method for identification of plasmid-coded proteins. Journal of Bacteriology 114:563–570
    [Google Scholar]
  27. Shaw D. G., Guest J. R. 1982; Amplification and product identification of the fnr gene of Escherichia coli. Journal of General Microbiology 128:2221–2228
    [Google Scholar]
  28. Spencer M. E., Lebeter V. M., Guest J. R. 1976; Location of the aspartase gene (aspA) on the linkage map of Escherichia coli K12. Journal of General Microbiology 97:73–82
    [Google Scholar]
  29. Suzuki S., Yamaguchi J., Tokushige M. 1973; Studies on aspartase. I. Purification and molecular properties of aspartase from Escherichia coli. Bio-chemica et biophysica acta 321:369–381
    [Google Scholar]
  30. Tilly K., Murialdo H., Georgopoulos C. 1981; Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proceedings of the National Academy of sciences of the United States of America 78:1629–1633
    [Google Scholar]
  31. Vogel H. 1956; A convenient growth medium for Escherichia coli and some other microorganisms. Microbial Genetics Bulletin 13:43–44
    [Google Scholar]
  32. Wu T. T. 1966; A model for three point analysis of random general transduction. Genetics 54:405–410
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-5-1271
Loading
/content/journal/micro/10.1099/00221287-130-5-1271
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error