Possible Role of Extracellular Membrane Particles in Hydrocarbon Utilization by 69-V Free

Abstract

Extracellular membrane particles were isolated from the cell-free culture liquid of 69-V grown on n-alkanes. It was demonstrated by means of an antiserum raised against intact cells of 69-V grown on hexadecane that the particles were probably derived from the surface membrane fraction of the bacteria. The accumulation by the bacteria of radioactivity originating from [C]hexadecane solubilized in the particles was studied. The apparent value for the uptake of solubilized hexadecane was 33 µ and the value was 1·2 × 10 mol min (mg bacterial protein). The value for the uptake of free hexadecane was approximately 10 times higher, indicating the possible role of particles as transport vehicles for the insoluble substrate. Accumulation of radioactivity was inhibited by KCN and NaN, suggesting an energy-dependent uptake process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-5-1035
1984-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/5/mic-130-5-1035.html?itemId=/content/journal/micro/10.1099/00221287-130-5-1035&mimeType=html&fmt=ahah

References

  1. Aurich H. 1979; Die OxydationaliphatischerKohlenwasserstoffedurchBakterien. Sitzungsbericht der Akademie der Wissenschaften der DDR; Mathematik-Naturwissenschaften-Technik 16 (N):3–24
    [Google Scholar]
  2. Claus R. 1979; Isolierung und Charakterisierung der NADH: Rubredoxin-Oxydoreductase aus Acinetobacter calcoaceticus. Dissertation A, Mathematisch-Naturwissenschaftliche Fakultät, Karl-Marx Universität Leipzig, GDR.
    [Google Scholar]
  3. Claus R., Kleber H.-P. 1981; Rubredoxin-Reductase in Rohextrakten von Acinetobacter calcoaceticus in Abhangigkeit von C-Quelle und Wachstumsphase. Zeitschrift für allgemeineMikro- biologie 21 (10):729–741
    [Google Scholar]
  4. Gregoriadis G. 1976; The carrier potential of liposomes in biology and medicine. New England Journal of Medicine 295:704–710
    [Google Scholar]
  5. Hisatsuka K., Nakahara T., Minoda Y., Yamada K. 1977; Formation of protein-like activator for n-alkane oxidation and its properties. Agricultural and Biological Chemistry 41:445–450
    [Google Scholar]
  6. Hoekstra D., Van Der Laan J. W., De Leij L., Witholt B. 1976; Release of outer membrane fragments from normally growing Escherichia coli. Biochimica et biophysica acta 455:889–899
    [Google Scholar]
  7. Itoh S., Honda H., Tomrita F., Suzuki T. 1971; Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). Journal of Antibiotics 24:855–859
    [Google Scholar]
  8. Jones N. C., Osborn M. J. 1977a; Interaction of Salmonella typhimurium with phospholipid vesicles. Journal of Biological Chemistry 252:7398–7404
    [Google Scholar]
  9. Jones N. C., Osborn M. J. 1977b; Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium. Journal of Biological Chemistry 252:7405–7412
    [Google Scholar]
  10. Käppeli O., Fiechter A. 1981; Properties of hexadecane uptake by Candida tropicalis. Current Microbiology 6:21–26
    [Google Scholar]
  11. Käppeli O., Finnerty W. R. 1979; Partition of alkane by an extracellular vesicle derived from hexa- decane-grown Acinetobacter. Journal of Bacteriology 140:707–712
    [Google Scholar]
  12. Käppeli O., Finnerty W. R. 1980; Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnology and Bioengineering 22:495–503
    [Google Scholar]
  13. Käppeli O., Müller M., Fiechter A. 1978; Chemical and structural alteration at the cell surface of Candida tropicalis, induced by hydrocarbon substrate. Journal of Bacteriology 133:952–958
    [Google Scholar]
  14. Kleber H.-P., Aurich H. 1973; Einfluss von n-Alkanen auf die Synthese der Enzyme des Glyoxylat-zyklus in Acinetobacter calcoaceticus. Zeitschrift für allgemeine Mikrobiologie 13:473–480
    [Google Scholar]
  15. Rapp P., Wagner F. 1976; Formation of trehalose lipid by Nocardiarhodochrous sp. grown on n-alkane. Abstracts of the 5th International Fermentation Symposium, Berlin p. 133 Berlin: Institut für Gärungs-gewerbe und Biotechnologie;
    [Google Scholar]
  16. Ruettinger R. T., Griffith G. R., Coon M. J. 1977; Characterization of the co-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein. Archives of Biochemistry and Biophysics 183:528–537
    [Google Scholar]
  17. Scott C. C. L, Makula R. A., Finnerty W. R. 1976; Isolation and characterization of membranes from a hydrocarbon-oxidizing Acinetobacter sp. Journal of Bacteriology 127:469–480
    [Google Scholar]
  18. Suzuki T., Tanaka K., Matsubara J., Kinoshita S. 1969; Trehalose lipid and α-branched-β-hydroxy fatty acid formed by bacteria grown on n-alkanes. Agricultural and Biological Chemistry 33:1619–1627
    [Google Scholar]
  19. Zajic J. E., Guignard J., Gerson D. F. 1977; Emulsifying and surface active agents from Coryne-bacterium hydrocarboclastus. Biotechnology and Bioengineering 19:1285–1301
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-5-1035
Loading
/content/journal/micro/10.1099/00221287-130-5-1035
Loading

Data & Media loading...

Most cited Most Cited RSS feed