1887

Abstract

492a and 492c were two strains of isolated from the sputum of a patient with cystic fibrosis. The strains were closely related but expressed different antibiograms. 492c was hypersensitive (10-100 times more sensitive than 492a) to the -lactam antibiotics carbenicillin, methicillin, flucloxacillin, mecillinam and cefuroxime and the non--lactam, nalidixic acid. 492c also showed enhanced sensitivity (48 times more sensitive than 492a) to chloramphenicol, trimethoprim and novobiocin. 492a and PAO8 expressed similar levels of antibiotic resistance, except for trimethoprim, to which 492a was five times more sensitive than PAO8. Two genes associated with antibiotic hypersensitivity were mapped in the 30 min region of the chromosome, by means of R68.45-mediated plate matings between a Leu mutant of 492c and PAO8, followed by transductional analysis using phage F116L. The first of these genes, was closely linked to and in a PAO background, was associated with hypersensitivity to the -lactams and a moderate increase in sensitivity to chloramphenicol, trimethoprim, nalidixic acid and novobiocin. A further increase in sensitivity to the latter three antibiotics was associated with the second gene, , which mapped between and . This gene could also be transferred to PAO from 492a, thus 492c could have arisen from 492a following a single chromosomal mutation at the locus. Isolation of a mutant of PAO969 provided further evidence for this theory.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-4-825
1984-04-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/4/mic-130-4-825.html?itemId=/content/journal/micro/10.1099/00221287-130-4-825&mimeType=html&fmt=ahah

References

  1. Angus B. L., Carey A. M., Caron D. A., Kropinski A.M.B., Hancock R.E.W. 1982; Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic- supersusceptible mutant. Antimicrobial Agents and Chemotherapy 21:299–309
    [Google Scholar]
  2. Berche P., Descamps P., Avril J. L., Daoulas-Lebourdelles F., Veron M. 1979; Effects of antibiotics on mucoid strains of Pseudomonas aeruginosa. Annales de Microbiologie 130A:315–330
    [Google Scholar]
  3. Boman H. G., Nordstrom K., Normark S. 1974; Penicillin resistance in Escherichia coli K12: synergism between penicillinases and a barrier in the outer part of the envelope. Annals of the New York Academy of Sciences 235:569–586
    [Google Scholar]
  4. Curtis N.A.C., Orr D., Boulton M. G., Ross G. W. 1981; Penicillin-binding proteins of Pseudomonas aeruginosa. Comparison of two strains differing in their resistance to /1-lactam antibiotics. Journal of Antimicrobial Chemotherapy 7:127–136
    [Google Scholar]
  5. Darveau R. P., Hancock R.E.W. 1983; Procedure for isolation of bacterial lipopoly- saccharides from both rough and smooth Pseudomonas aeruginosa and Salmonella typhimurium strains. Journal of Bacteriology 155:831–838
    [Google Scholar]
  6. Eisenstein B. I., Sparling P. F. 1978; Mutations to increased antibiotic sensitivity in naturally- occurring gonococci. Nature; London: 271242–244
    [Google Scholar]
  7. Fyfe J.A.M., Govan J.R.W. 1980; Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. Journal of General Microbiology 119:443–450
    [Google Scholar]
  8. Fyfe J.A.M., Govan J.R.W. 1983; Genetic analysis of antibiotic hypersensitivity in Pseudomonas aeruginosa. Society for General Microbiology Quarterly 9: part 4 M10
    [Google Scholar]
  9. Govan J.R.W., Fyfe J.A.M. 1978; Mucoid Pseudomonas aeruginosa and cystic fibrosis: resistance of the mucoid form to carbenicillin, flucloxacil- lin and tobramycin and the isolation of mucoid variants in vitro. Journal of Antimicrobial Chemotherapy 4:233–240
    [Google Scholar]
  10. Gray G. L., Vasil M. L. 1981a; Isolation and genetic characterization of toxin deficient mutants of Pseudomonas aeruginosa PAO. Journal of Bacteriology 147:275–281
    [Google Scholar]
  11. Gray G. L., Vasil M. L. 1981b; Mapping of a gene controlling the production of phospholipase C and alkaline phosphatase in Pseudomonas aeruginosa. Molecular and General Genetics 183:403–405
    [Google Scholar]
  12. Grundstrom T., Normark S., Magnusson K. E. 1980; Over-production of outer membrane protein suppresses envA-induced hyperpermeability. Journal of Bacteriology 144:884–890
    [Google Scholar]
  13. Haas D., Holloway B. W. 1976; R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Molecular and General Genetics 144:243–251
    [Google Scholar]
  14. Hanne L. F., Howe T. R., Iglewski B. H. 1983; Locus of the Pseudomonas aeruginosa toxin A gene. Journal of Bacteriology 154:383–386
    [Google Scholar]
  15. Holloway B. W. 1969; Genetics of Pseudomonas. Bacteriological Reviews 33:419–443
    [Google Scholar]
  16. Holloway B. W., Crockett R. J. 1982 Pseudomonas aeruginosa. Genetic Maps 2:165–167
    [Google Scholar]
  17. Irvin R. T., Govan J.R.W., Fyfe J.A.M., Costerton J. W. 1981; Heterogeneity of antibiotic resistance in mucoid isolates of Pseudomonas aeruginosa obtained from cystic fibrosis patients: role of outer membrane proteins. Antimicrobial Agents and Chemotherapy 19:1056–1063
    [Google Scholar]
  18. Isaac J. H., Holloway B. W. 1968; Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology 96:1732–1741
    [Google Scholar]
  19. Knudsen E. T., Rolinson G. N., Sutherland R. 1967; Carbenicillin: a new semi-synthetic penicillin active against Pseudomonas pyocyanea. British Medical Journal 3:75–78
    [Google Scholar]
  20. Krishnapillai V. 1971; A novel transducing phage: its role in recognition of a possible new host controlled modification system in Pseudomonas aeruginosa. Molecular and General Genetics 114:134–143
    [Google Scholar]
  21. Kropinski A. M., Kuzio J., Angus B. L., Hancock R.E.W. 1982; Chemical and chromatographic analysis of lipopolysaccharide from an anti-biotic-supersusceptible mutant of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 21:310–319
    [Google Scholar]
  22. Lysko P. G., Morse S. A. 1981; Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules. Journal of Bacteriology 145:946–952
    [Google Scholar]
  23. Marks M. I., Prentice R., Swarson R., Cotton E. K., Eickhoff T. C. 1971; Carbenicillin and gentamicin: pharmacologic studies in patients with cystic fibrosis and pseudomonas pulmonary infections. Journal of Pediatrics 79:822–828
    [Google Scholar]
  24. Matsumoto H., Terawaki Y. 1982; Chromosomal location of the genes participating in the formation of β-lactamase in Pseudomonas aeruginosa.. In Drug Resistance in Bacteria pp. 207–211 Mitsuhashi S. Edited by Tokyo:: Japan Scientific Societies Press;
    [Google Scholar]
  25. May J. R., Ingold A. 1972; Sensitivity of respiratory strains of Pseudomonas aeruginosa to carbenicillin. Journal of Medical Microbiology 6:77–82
    [Google Scholar]
  26. Mee B. J., Lee B.T.O. 1967; An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55:709–722
    [Google Scholar]
  27. Mills B. J., Holloway B. W. 1976; Mutants of Pseudomonas aeruginosa that show specific hypersensitivity to aminoglycosides. Antimicrobial Agents and Chemotherapy 10:411–416
    [Google Scholar]
  28. Noguchi H., Fukasawa M., Komatsu T., Iyobe S., Mitsuhashi S. 1980; Isolation of two types of Pseudomonas aeruginosa mutants highly sensitive to a specific group of /Mactam antibiotics and with defect in penicillin binding proteins. Journal of Antibiotics 33:1521–1526
    [Google Scholar]
  29. Okii M., Iyobe S., Mitsuhashi S. 1983; Mapping of the gene specifying aminoglycoside 3′-phosphotransferase II on the Pseudomonas aeruginosa chromosome. Journal of Bacteriology 155:643–649
    [Google Scholar]
  30. Rella M., Haas D. 1982; Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of β-lactam antibiotics: mapping of chromosomal genes. Antimicrobial Agents and Chemotherapy 22:242–249
    [Google Scholar]
  31. Rolfe B., Holloway B. W. 1966; Alterations in host specificity of bacterial deoxyribonucleic acid after an increase in growth temperature of Pseudomonas aeruginosa. Journal of Bacteriology 92:43–48
    [Google Scholar]
  32. Sinclair M. I., Holloway B. W. 1982; A chromosomally located transposon in Pseudomonas aeruginosa. Journal of Bacteriology 151:569–579
    [Google Scholar]
  33. Stanisich V., Holloway B. W. 1972; A mutant sex factor of Pseudomonas aeruginosa. Genetical Research 19:91–108
    [Google Scholar]
  34. Watson J. M., Holloway B. W. 1976; Suppressor mutations in Pseudomonas aeruginosa. Journal of Bacteriology 125:780–786
    [Google Scholar]
  35. Watson J. M., Holloway B. W. 1978; Linkage map of Pseudomonas aeruginosa PAT. Journal of Bacteriology 136:507–521
    [Google Scholar]
  36. Wretlind B., Bjorklind A., Karlsson I., Hagelberg A. 1983; Genetic mapping and characterization of a proelastase producing mutant of Pseudomonas aeruginosa. Abstracts of the 83rd Annual Meeting of the American Society for Microbiology p. 37 Washington, D.C.:: American Society for Microbiology;
    [Google Scholar]
  37. Zimmerman W. 1979; Penetration through the Gram-negative cell wall: a codeterminant of the efficacy of beta-lactam antibiotics. International Journal of Clinical Pharmacology and Biopharmacy 17:131–134
    [Google Scholar]
  38. Zimmerman W. 1980; Penetration of beta-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: comparison of a highly sensitive mutant with its parent strain. Antimicrobial Agents and Chemotherapy 18:94–100
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-4-825
Loading
/content/journal/micro/10.1099/00221287-130-4-825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error