1887

Abstract

The synthesis of propanediol oxidoreductase, an enzyme permitting the anaerobic metabolism of fucose and rhamnose, has been described as being controlled by the locus closely linked to the locus in wild-type cells of However, strain AA-787, deleted in the and loci, grew anaerobically on rhamnose, displaying propanediol oxidoreductase activity. From the deleted strain we derived a constitutive producer of propanediol oxidoreductase able to grow on 1,2-propanediol by oxidizing the diol to lactaldehyde which was further metabolized to lactate. Transduction experiments showed that this ability to use propanediol was closely linked to the locus. Peptide mapping of fucose- and rhamnose-induced propanediol oxidoreductase of wild-type cells established structural differences between the two enzymes, indicating two structural genes, one for each sugar metabolizing system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-3-687
1984-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/3/mic-130-3-687.html?itemId=/content/journal/micro/10.1099/00221287-130-3-687&mimeType=html&fmt=ahah

References

  1. Atherly A. G. 1979; Escherichia coli mutant containing a large deletion from relA to argA . Journal of Bacteriology 138:530–534
    [Google Scholar]
  2. Bachman B. J. 1972; Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriological Reviews 36:525–557
    [Google Scholar]
  3. Bachmann B. J., Low K. B. 1980; Linkage map of Escherichia coli K-12, edition 6. Microbiological Reviews 44:1–56
    [Google Scholar]
  4. Boronat A., Aguilar J. 1979; Rhamnose- induced propanediol oxidoreductase in Escherichia coli: purification properties and comparison with the fucose-induced enzymes. Journal of Bacteriology 140:320–326
    [Google Scholar]
  5. Boronat A., Aguilar J. 1981a; Experimental evolution of propanediol oxidoreductase in Escherichia coli: comparative analysis of the wild type and mutant enzymes. Biochimica et biophysica acta 672:98–107
    [Google Scholar]
  6. Boronat A., Aguilar J. 1981b; Metabolism of l- fucose and l-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase. Journal of Bacteriology 147:181–185
    [Google Scholar]
  7. Chiu T. H., Feingold D. S. 1969; l-rhamnulose 1-phosphate aldolase from Escherichia coli. Crystallization and properties. Biochemistry 8:98–108
    [Google Scholar]
  8. Cocks G. T., Aguilar J., Lin E.C.C. 1974; Evolution of l-l ,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for l-fucose and l-lactate metabolism. Journal of Bacteriology 118:83–88
    [Google Scholar]
  9. Daldal F., Fraenkel D. G. 1981; TnlO insertions in the pfkB region of Escherichia coli . Journal of Bacteriology 147:935–943
    [Google Scholar]
  10. Ghalambor M. A., Heath E. C. 1962; The metabolism of l-fucose. II. The enzymatic cleavage of l-fuculose-1-phosphate. Journal of Biological Chemistry 237:2427–2433
    [Google Scholar]
  11. Green M., Cohen S. S. 1956; The enzymatic conversion of l-fucose to l-fuculose. Journal of Biological Chemistry 219:557–568
    [Google Scholar]
  12. Hacking A. J., Lin E.C.C. 1976; Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli . Journal of Bacteriology 126:1166–1172
    [Google Scholar]
  13. Hacking A. J., Aguilar J., Lin E.C.C. 1978; Evolution of propanediol utilization in Escherichia coli: mutant with improved substrate-scavenging power. Journal of Bacteriology 136:522–530
    [Google Scholar]
  14. Heath E. C., Ghalambor M. A. 1962; The metabolism of l-fucose. I. The purification and properties of l-fuculose kinase. Journal of Biological Chemistry 237:2423–2426
    [Google Scholar]
  15. Kkuchi A., Gorini L. 1975; Similarity of genes argF and argl . Nature; London: 256621–624
    [Google Scholar]
  16. Koo P. H., Adams E. 1974; α-Ketoglutaric semialdehyde dehydrogenase of Pseudomonas. Properties of the separately induced isoenzymes. Journal of Biological Chemistry 249:1704–1716
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  18. Laurell C. B. 1966; Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Analytical Biochemistry 15:45–52
    [Google Scholar]
  19. Lin E.C.C., Lerner S. A., Jorgensen S. E. 1962; A method for isolating constitutive mutants for carbohydrate-catabolizing enzymes. Biochimica et biophysica acta 60:422–424
    [Google Scholar]
  20. Miller J. H. 1972 Experiments in Molecular Genetics, 1st edn. pp. 230–234 Cold Spring Harbor, New York:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  21. Ouchterlony O. 1953; Antigen-antibodies reactions in gels. IV. Types of reactions in coordinated systems of diffusion. Acta pathologica et microbiologica scandinavica 22:231–240
    [Google Scholar]
  22. Riley M., Anilionis A. 1978; Evolution of the bacterial genome. Annual Review of Microbiology 32:519–560
    [Google Scholar]
  23. Russell R.R.B. 1973; Close linkage of prd and rel genes in Escherichia coli K-12. Molectdar and General Genetics 124:369–370
    [Google Scholar]
  24. Sridhara S., Wu T. T., Chused T. M., Lin E.C.C. 1969; Ferrous-activated nicotinamide adenine dinucleotide linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1,2-propanediol. Journal of Bacteriology 98:87–95
    [Google Scholar]
  25. Takagi Y., Sawada H. 1964a; The metabolism of l-rhamnose in Escherichia coli. I. l-rhamnose isome rase. Biochemica et biophysica acta 92:10–17
    [Google Scholar]
  26. Takagi Y., Sawada H. 1964b; The metabolism of l-rhamnose in Escherichia coli. II. l-rhamnulose kinase. Biochimica et biophysica acta 92:18–25
    [Google Scholar]
  27. Whittaker R. G., Moss B. A. 1981; Comparative peptide mapping at the nanomole level. Analytical Biochemistry 110:56–60
    [Google Scholar]
  28. Zipkas D., Riley M. 1975; Proposal concerning mechanism of evolution of the genome of Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 72:1354–1358
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-3-687
Loading
/content/journal/micro/10.1099/00221287-130-3-687
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error